Journal of Molecular Medicine

, Volume 84, Issue 10, pp 842–851 | Cite as

Treatment of coxsackievirus-B3-infected BALB/c mice with the soluble coxsackie adenovirus receptor CAR4/7 aggravates cardiac injury

  • A. Dörner
  • H.-P. Grunert
  • V. Lindig
  • K. Chandrasekharan
  • H. Fechner
  • K. U. Knowlton
  • A. Isik
  • M. Pauschinger
  • H. Zeichhardt
  • H.-P. Schultheiss
Original Article

Abstract

Coxsackie adenovirus receptor (CAR) is involved in immunological processes, and its soluble isoforms have antiviral effects on coxsackievirus B3 (CVB3) infection in vitro. We explored in this study the impact of CAR4/7, a soluble CAR isoform, on CVB3-induced myocarditis in BALB/c mice. BALB/c mice were treated daily with recombinant CAR4/7, β-galactosidase (β-Gal; as control protein) or buffer for 9 days. Half of each group was infected with CVB3 on day 3, and all mice were killed on day 9. Myocardial CVB3 titer, histology, and serology were analyzed. Treatment with CAR4/7 led to a significant reduction of myocardial CVB3 titer, whereas the application of β-Gal had no detectable effect on the myocardial virus load. CAR4/7 application, however, resulted in increased myocardial inflammation and tissue damage in CVB3-infected hearts, whereas β-Gal caused a degree of cardiac inflammation and injury similar to that in buffer-treated CVB3-infected control animals. CAR4/7 and β-Gal treatment induced the production of antibodies against the respective antigens. CAR4/7-, but not β-Gal-specific, virus-negative sera reacted against myocardial tissue and cellular membranous CAR, and significantly inhibited CVB3 infection in vitro. Thus, CAR4/7 suppressed CVB3 infection in vivo, supporting the concept of receptor analog in antiviral therapy. However, CAR4/7 treatment also leads to an aggravation of myocardial inflammation and injury most likely secondary to an autoimmune process.

Keywords

Coxsackie adenovirus receptor Myocarditis Coxsackievirus B3 

Notes

Acknowledgement

Financial support of “Otto-Kuhn-Stiftung im Stifterverband für die Deutsche Wissenschaft” is gratefully acknowledged.

References

  1. 1.
    Pauschinger M, Doerner A, Kuehl U, Schwimmbeck PL, Poller W, Kandolf R, Schultheiss HP (1999) Enteroviral RNA replication in the myocardium of patients with left ventricular dysfunction and clinically suspected myocarditis. Circulation 99:889–895PubMedGoogle Scholar
  2. 2.
    Gauntt C, Huber S (2003) Coxsackievirus experimental heart diseases. Front Biosci 8:e23–e35PubMedGoogle Scholar
  3. 3.
    Noutsias M, Pauschinger M, Poller WC, Schultheiss HP, Kuhl U (2003) Current insights into the pathogenesis, diagnosis and therapy of inflammatory cardiomyopathy. Heart Fail Monit 3:127–135PubMedGoogle Scholar
  4. 4.
    Dörner A, Kallwellis-Opara A, Pauschinger M, Kühl U, Schultheiss HP (2005) Cardiac autoantibodies in viral myocarditis. In: Narula J, Young JB (eds) Heart failure clinics. Myocarditis. Saunders, Philadelphia, pp 333–343Google Scholar
  5. 5.
    Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW (1997) Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323PubMedCrossRefGoogle Scholar
  6. 6.
    He Y, Chipman PR, Howitt J, Bator CM, Whitt MA, Baker TS, Kuhn RJ, Anderson CW, Freimuth P, Rossmann MG (2001) Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor. Nat Struct Biol 8:874–878PubMedCrossRefGoogle Scholar
  7. 7.
    Bergelson JM, Mohanty JG, Crowell RL, St. John NF, Lublin DM, Finberg RW (1995) Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55). J Virol 69:1903–1906PubMedGoogle Scholar
  8. 8.
    Shafren DR, Bates RC, Agrez MV, Herd RL, Burns GF, Barry RD (1995) Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment. J Virol 69:3873–3877PubMedGoogle Scholar
  9. 9.
    Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM (2001) The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA 98:15191–15196PubMedCrossRefGoogle Scholar
  10. 10.
    Noutsias M, Fechner H, de Jonge H, Wang X, Dekkers D, Houtsmuller AB, Pauschinger M, Bergelson J, Warraich R, Yacoub M, Hetzer R, Lamers J, Schultheiss HP, Poller W (2001) Human coxsackie-adenovirus receptor is colocalized with integrins alpha(v)beta(3) and alpha(v)beta(5) on the cardiomyocyte sarcolemma and upregulated in dilated cardiomyopathy: implications for cardiotropic viral infections. Circulation 104:275–280PubMedGoogle Scholar
  11. 11.
    Honda T, Saitoh H, Masuko M, Katagiri-Abe T, Tominaga K, Kozakai I, Kobayashi K, Kumanishi T, Watanabe YG, Odani S, Kuwano R (2000) The coxsackievirus-adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain. Brain Res Mol Brain Res 77:19–28PubMedCrossRefGoogle Scholar
  12. 12.
    Coyne CB, Bergelson JM (2006) Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124:119–131PubMedCrossRefGoogle Scholar
  13. 13.
    Asher DR, Cerny AM, Weiler SR, Horner JW, Keeler ML, Neptune MA, Jones SN, Bronson RT, Depinho RA, Finberg RW (2005) Coxsackievirus and adenovirus receptor is essential for cardiomyocyte development. Genesis 42(2):77–85PubMedCrossRefGoogle Scholar
  14. 14.
    Dorner AA, Wegmann F, Butz S, Wolburg-Buchholz K, Wolburg H, Mack A, Nasdala I, August B, Westermann J, Rathjen FG, Vestweber D (2005) Coxsackievirus-adenovirus receptor (CAR) is essential for early embryonic cardiac development. J Cell Sci 118(15):3509–3521PubMedCrossRefGoogle Scholar
  15. 15.
    Tomko RP, Johansson CB, Totrov M, Abagyan R, Frisen J, Philipson L (2000) Expression of the adenovirus receptor and its interaction with the fiber knob. Exp Cell Res 255:47–55PubMedCrossRefGoogle Scholar
  16. 16.
    Philipson L, Pettersson RF (2004) The coxsackie-adenovirus receptor—a new receptor in the immunoglobulin family involved in cell adhesion. Curr Top Microbiol Immunol 273:87–111PubMedGoogle Scholar
  17. 17.
    Carson SD, Chapman NM (2001) Coxsackievirus and adenovirus receptor (CAR) binds immunoglobulins. Biochemistry 40:14324–14329PubMedCrossRefGoogle Scholar
  18. 18.
    Zen K, Liu Y, McCall IC, Wu T, Lee W, Babbin BA, Nusrat A, Parkos CA (2005) Neutrophil migration across tight junctions is mediated by adhesive interactions between epithelial coxsackie and adenovirus receptor and a junctional adhesion molecule-like protein on neutrophils. Mol Biol Cell 16:2694–2703PubMedCrossRefGoogle Scholar
  19. 19.
    Chen JW, Ghosh R, Finberg RW, Bergelson JM (2003) Structure and chromosomal localization of the murine coxsackievirus and adenovirus receptor gene. DNA Cell Biol 22:253–259PubMedCrossRefGoogle Scholar
  20. 20.
    Dörner A, Xiong D, Couch K, Yajima T, Knowlton KU (2004) Alternatively spliced soluble coxsackie-adenovirus receptors inhibit coxsackievirus infection. J Biol Chem 279:18497–18503PubMedCrossRefGoogle Scholar
  21. 21.
    Thoelen I, Magnusson C, Tagerud S, Polacek C, Lindberg M, Van RM (2001) Identification of alternative splice products encoded by the human coxsackie-adenovirus receptor gene. Biochem Biophys Res Commun 287:216–222PubMedCrossRefGoogle Scholar
  22. 22.
    Carson SD (2004) Coxsackievirus and adenovirus receptor (CAR) is modified and shed in membrane vesicles. Biochemistry 43:8136–8142PubMedCrossRefGoogle Scholar
  23. 23.
    Bernal RM, Sharma S, Gardner BK, Douglas JT, Bergelson JM, Dubinett SM, Batra RK (2002) Soluble coxsackievirus adenovirus receptor is a putative inhibitor of adenoviral gene transfer in the tumor milieu. Clin Cancer Res 8:1915–1923PubMedGoogle Scholar
  24. 24.
    Walters RW, Freimuth P, Moninger TO, Ganske I, Zabner J, Welsh MJ (2001) Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell 110(6):789–799CrossRefGoogle Scholar
  25. 25.
    Yanagawa B, Spiller OB, Proctor DG, Choy J, Luo H, Zhang HM, Suarez A, Yang D, McManus BM (2004) Soluble recombinant coxsackievirus and adenovirus receptor abrogates coxsackievirus b3-mediated pancreatitis and myocarditis in mice. J Infect Dis 189:1431–1439PubMedCrossRefGoogle Scholar
  26. 26.
    Wetz K, Willingmann P, Zeichhardt H, Habermehl KO (1986) Neutralization of poliovirus by polyclonal antibodies requires binding of a single IgG molecule per virion. Arch Virol 91:207–220PubMedCrossRefGoogle Scholar
  27. 27.
    Yanagawa B, Spiller OB, Choy J, Luo H, Cheung P, Zhang HM, Goodfellow IG, Evans DJ, Suarez A, Yang D, McManus BM (2003) Coxsackievirus B3-associated myocardial pathology and viral load reduced by recombinant soluble human decay-accelerating factor in mice. Lab Invest 83:75–85PubMedGoogle Scholar
  28. 28.
    Noutsias M, Pauschinger M, Schultheiss HP, Kuhl U (2002) Phenotypic characterization of infiltrates in dilated cardiomyopathy-diagnostic significance of T-lymphocytes and macrophages in inflammatory cardiomyopathy. Med Sci Monit 8:CR478–CR487PubMedGoogle Scholar
  29. 29.
    Lawson CM (2000) Evidence for mimicry by viral antigens in animal models of autoimmune disease including myocarditis. Cell Mol Life Sci 57:552–560PubMedCrossRefGoogle Scholar
  30. 30.
    Fechner H, Wang X, Wang H, Jansen A, Pauschinger M, Scherubl H, Bergelson JM, Schultheiss HP, Poller W (2000) Trans-complementation of vector replication versus coxsackie-adenovirus-receptor overexpression to improve transgene expression in poorly permissive cancer cells. Gene Ther 7:1954–1968PubMedCrossRefGoogle Scholar
  31. 31.
    Carson SD, Hobbs JT, Tracy SM, Chapman NM (1999) Expression of the coxsackievirus and adenovirus receptor in cultured human umbilical vein endothelial cells: regulation in response to cell density. J Virol 73:7077–7079PubMedGoogle Scholar
  32. 32.
    Takada H, Kishimoto C, Hiraoka Y (1995) Therapy with immunoglobulin suppresses myocarditis in a murine coxsackievirus B3 model. Antiviral and anti-inflammatory effects. Circulation 92:1604–1611PubMedGoogle Scholar
  33. 33.
    Goodfellow IG, Evans DJ, Blom AM, Kerrigan D, Miners JS, Morgan BP, Spiller OB (2005) Inhibition of coxsackie B virus infection by soluble forms of its receptors: binding affinities, altered particle formation, and competition with cellular receptors. J Virol 79:12016–12024PubMedCrossRefGoogle Scholar
  34. 34.
    Orthopoulos G, Triantafilou K, Triantafilou M (2004) Coxsackie B viruses use multiple receptors to infect human cardiac cells. J Med Virol 74:291–299PubMedCrossRefGoogle Scholar
  35. 35.
    Neu N, Rose NR, Beisel KW, Herskowitz A, Gurri-Glass G, Craig SW (1987) Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol 139:3630–3636PubMedGoogle Scholar
  36. 36.
    Schulze K, Becker BF, Schultheiss HP (1989) Antibodies to the ADP/ATP carrier, an autoantigen in myocarditis and dilated cardiomyopathy, penetrate into myocardial cells and disturb energy metabolism in vivo. Circ Res 64:179–192PubMedGoogle Scholar
  37. 37.
    Jahns R, Boivin V, Hein L, Triebel S, Angermann CE, Ertl G, Lohse MJ (2004) Direct evidence for a beta 1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest 113:1419–1429PubMedCrossRefGoogle Scholar
  38. 38.
    Okazaki T, Tanaka Y, Nishio R, Mitsuiye T, Mizoguchi A, Wang J, Ishida M, Hiai H, Matsumori A, Minato N, Honjo T (2003) Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med 9:1477–1483PubMedCrossRefGoogle Scholar
  39. 39.
    Takai T (2002) Roles of Fc receptors in autoimmunity. Nat Rev Immunol 2:580–592PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A. Dörner
    • 1
  • H.-P. Grunert
    • 2
  • V. Lindig
    • 2
  • K. Chandrasekharan
    • 1
  • H. Fechner
    • 1
  • K. U. Knowlton
    • 3
  • A. Isik
    • 1
  • M. Pauschinger
    • 1
  • H. Zeichhardt
    • 2
  • H.-P. Schultheiss
    • 1
  1. 1.Department of Cardiology and PneumonologyCharité University of MedicineBerlinGermany
  2. 2.Department of VirologyCharité University of MedicineBerlinGermany
  3. 3.Division of CardiologyUniversity of California Medical CenterSan DiegoUSA

Personalised recommendations