Journal of Molecular Medicine

, Volume 84, Issue 8, pp 671–681 | Cite as

Gene amplification, mutation, and protein expression of EGFR and mutations of ERBB2 in serous ovarian carcinoma

  • Heini Lassus
  • Harri Sihto
  • Arto Leminen
  • Heikki Joensuu
  • Jorma Isola
  • Nina N. Nupponen
  • Ralf Butzow
Original Article


EGFR and erbB-2 are targets for specific cancer therapy. The purpose of this study was to examine the frequency and clinicopathological correlations of gene amplification, protein expression, and mutations of EGFR and ERBB2 in serous carcinoma, the most common and aggressive type of ovarian cancer. Tissue microarray constructed of 398 carcinomas was examined by chromogenic in situ hybridization (CISH) and by immunohistochemistry. Cases with amplification of EGFR by CISH were further analyzed by fluorescence in situ hybridization. One hundred ninety-eight samples were analyzed for mutations in exons 18, 19, or 21 of EGFR and in exon 20 of ERBB2 using denaturating high-performance liquid chromatography and direct sequencing. Amplification of EGFR was present in 12% (41/333), low-level gain in 43% (144/333), and protein overexpression in 17% (66/379) of the tumors. Both increased copy number and overexpression of EGFR were associated with high tumor grade, greater patient age, large residual tumor size, high proliferation index, aberrant p53, and poor patient outcome. Furthermore, increased copy number of EGFR was associated with increased copy number of ERBB2. No mutations were identified in EGFR, whereas one tumor had an insertion mutation in exon 20 of ERBB2. Both amplification and protein overexpression of EGFR occur in serous ovarian carcinoma, but EGFR copy number has a stronger prognostic value. This makes EGFR amplification a potentially useful criterion for selecting patients in clinical trials testing the effect of EGFR inhibitors in serous ovarian carcinoma.


Cystadenocarcinoma Serous erbB-1 erbB-2 Gene amplification Mutation 



This study is supported by grants from the Cancer Society of Finland, Foundation for the Finnish Cancer Institute, the Academy of Finland, and Helsinki University Central Hospital.


  1. 1.
    DiSaia PJ, Bloss JD (2003) Treatment of ovarian cancer: new strategies. Gynecol Oncol 90:S24–S32PubMedCrossRefGoogle Scholar
  2. 2.
    Burris HA 3rd (2004) Dual kinase inhibition in the treatment of breast cancer: initial experience with the EGFR/ErbB-2 inhibitor lapatinib. Oncologist 9(Suppl 3):10–15PubMedCrossRefGoogle Scholar
  3. 3.
    Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS, Vogelstein B (1992) Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci U S A 89:2965–2969PubMedCrossRefGoogle Scholar
  4. 4.
    Frederick L, Wang XY, Eley G, James CD (2000) Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60:1383–1387PubMedGoogle Scholar
  5. 5.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139CrossRefPubMedGoogle Scholar
  6. 6.
    Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500CrossRefPubMedGoogle Scholar
  7. 7.
    Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, Haney J, Witta S, Danenberg K, Domenichini I, Ludovini V, Magrini E, Gregorc V, Doglioni C, Sidoni A, Tonato M, Franklin WA, Crino L, Bunn PA Jr, Varella-Garcia M (2005) Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 97:643–655PubMedCrossRefGoogle Scholar
  8. 8.
    Schilder RJ, Sill MW, Chen X, Darcy KM, Decesare SL, Lewandowski G, Lee RB, Arciero CA, Wu H, Godwin AK (2005) Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a gynecologic oncology group study. Clin Cancer Res 11:5539–5548PubMedCrossRefGoogle Scholar
  9. 9.
    Berchuck A, Rodriguez GC, Kamel A, Dodge RK, Soper JT, Clarke-Pearson DL, Bast RC Jr (1991) Epidermal growth factor receptor expression in normal ovarian epithelium and ovarian cancer. I. Correlation of receptor expression with prognostic factors in patients with ovarian cancer. Am J Obstet Gynecol 164:669–674PubMedGoogle Scholar
  10. 10.
    Fischer-Colbrie J, Witt A, Heinzl H, Speiser P, Czerwenka K, Sevelda P, Zeillinger R (1997) EGFR and steroid receptors in ovarian carcinoma: comparison with prognostic parameters and outcome of patients. Anticancer Res 17:613–619PubMedGoogle Scholar
  11. 11.
    Skirnisdottir I, Seidal T, Sorbe B (2004) A new prognostic model comprising p53, EGFR, and tumor grade in early stage epithelial ovarian carcinoma and avoiding the problem of inaccurate surgical staging. Int J Gynecol Cancer 14:259–270PubMedCrossRefGoogle Scholar
  12. 12.
    Baekelandt M, Kristensen GB, Trope CG, Nesland JM, Holm R (1999) Epidermal growth factor receptor expression has no independent prognostic significance in advanced ovarian cancer. Anticancer Res 19:4469–4474PubMedGoogle Scholar
  13. 13.
    Elie C, Geay JF, Morcos M, Le Tourneau A, Girre V, Broet P, Marmey B, Chauvenet L, Audouin J, Pujade-Lauraine E, Camilleri-Broet S (2004) Lack of relationship between EGFR-1 immunohistochemical expression and prognosis in a multicentre clinical trial of 93 patients with advanced primary ovarian epithelial cancer (GINECO group). Br J Cancer 91:470–475PubMedCrossRefGoogle Scholar
  14. 14.
    Lee CH, Huntsman DG, Cheang MC, Parker RL, Brown L, Hoskins P, Miller D, Gilks CB (2005) Assessment of Her-1, Her-2, And Her-3 expression and Her-2 amplification in advanced stage ovarian carcinoma. Int J Gynecol Pathol 24:147–152PubMedCrossRefGoogle Scholar
  15. 15.
    Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712PubMedCrossRefGoogle Scholar
  16. 16.
    Singleton TP, Perrone T, Oakley G, Niehans GA, Carson L, Cha SS, Strickler JG (1994) Activation of c-erbB-2 and prognosis in ovarian carcinoma. Comparison with histologic type, grade, and stage. Cancer 73:1460–1466PubMedCrossRefGoogle Scholar
  17. 17.
    Mano MS, Awada A, Di Leo A, Durbecq V, Paesmans M, Cardoso F, Larsimont D, Piccart M (2004) Rates of topoisomerase II-alpha and HER-2 gene amplification and expression in epithelial ovarian carcinoma. Gynecol Oncol 92:887–895PubMedCrossRefGoogle Scholar
  18. 18.
    Lassus H, Leminen A, Vayrynen A, Cheng G, Gustafsson J-Å, Isola J, Butzow R (2004) ERBB2 amplification is superior to protein expression status in predicting patient outcome in serous ovarian carcinoma. Gynecol Oncol 92:31–39PubMedCrossRefGoogle Scholar
  19. 19.
    Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J, Stevens C, O’Meara S, Smith R, Parker A, Barthorpe A, Blow M, Brackenbury L, Butler A, Clarke O, Cole J, Dicks E, Dike A, Drozd A, Edwards K, Forbes S, Foster R, Gray K, Greenman C, Halliday K, Hills K, Kosmidou V, Lugg R, Menzies A, Perry J, Petty R, Raine K, Ratford L, Shepherd R, Small A, Stephens Y, Tofts C, Varian J, West S, Widaa S, Yates A, Brasseur F, Cooper CS, Flanagan AM, Knowles M, Leung SY, Louis DN, Looijenga LH, Malkowicz B, Pierotti MA, Teh B, Chenevix-Trench G, Weber BL, Yuen ST, Harris G, Goldstraw P, Nicholson AG, Futreal PA, Wooster R, Stratton MR (2004) Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431:525–526PubMedCrossRefGoogle Scholar
  20. 20.
    Risch HA, Marrett LD, Jain M, Howe GR (1996) Differences in risk factors for epithelial ovarian cancer by histologic type. Results of a case-control study. Am J Epidemiol 144:363–372PubMedGoogle Scholar
  21. 21.
    Obata K, Morland SJ, Watson RH, Hitchcock A, Chenevix-Trench G, Thomas EJ, Campbell IG (1998) Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res 58:2095–2097PubMedGoogle Scholar
  22. 22.
    Schwartz DR, Kardia SL, Shedden KA, Kuick R, Michailidis G, Taylor JM, Misek DE, Wu R, Zhai Y, Darrah DM, Reed H, Ellenson LH, Giordano TJ, Fearon ER, Hanash SM, Cho KR (2002) Gene expression in ovarian cancer reflects both morphology and biological behavior, distinguishing clear cell from other poor-prognosis ovarian carcinomas. Cancer Res 62:4722–4729PubMedGoogle Scholar
  23. 23.
    Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847CrossRefPubMedGoogle Scholar
  24. 24.
    Lassus H, Leminen A, Lundin J, Lehtovirta P, Butzow R (2003) Distinct subtypes of serous ovarian carcinoma identified by p53 determination. Gynecol Oncol 91:504–512PubMedCrossRefGoogle Scholar
  25. 25.
    Lassus H, Sihto H, Leminen A, Nordling S, Joensuu H, Nupponen NN, Butzow R (2004) Genetic alterations and protein expression of KIT and PDGFRA in serous ovarian carcinoma. Br J Cancer 91:2048–2055PubMedCrossRefGoogle Scholar
  26. 26.
    Sihto H, Puputti M, Pulli L, Tynninen O, Koskinen W, Aaltonen LM, Tanner M, Bohling T, Visakorpi T, Butzow R, Knuuttila A, Nupponen NN, Joensuu H (2005) Epidermal growth factor receptor domain II, IV, and kinase domain mutations in human solid tumors. J Mol Med 83:976–983PubMedCrossRefGoogle Scholar
  27. 27.
    Järvelä S, Helin H, Haapasalo J, Järvelä T, Junttila T, Elenius K, Tanner M, Haapasalo H, Isola J (2005) Amplification of the epidermal growth factor receptor in astrocytic tumors by chromogenic in situ hybridization: Association with clinicopathological features and patient survival. Neuropathol Appl Neurobiol (in press)Google Scholar
  28. 28.
    Hyytinen E, Visakorpi T, Kallioniemi A, Kallioniemi OP, Isola JJ (1994) Improved technique for analysis of formalin-fixed, paraffin-embedded tumors by fluorescence in situ hybridization. Cytometry 16:93–99PubMedCrossRefGoogle Scholar
  29. 29.
    Jahkola T, Toivonen T, Virtanen I, von Smitten K, Nordling S, von Boguslawski K, Haglund C, Nevanlinna H, Blomqvist C (1998) Tenascin-C expression in invasion border of early breast cancer: a predictor of local and distant recurrence. Br J Cancer 78:1507–1513PubMedGoogle Scholar
  30. 30.
    Pauletti G, Dandekar S, Rong H, Ramos L, Peng H, Seshadri R, Slamon DJ (2000) Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol 18:3651–3664PubMedGoogle Scholar
  31. 31.
    Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20:719–726CrossRefPubMedGoogle Scholar
  32. 32.
    Alper O, De Santis ML, Stromberg K, Hacker NF, Cho-Chung YS, Salomon DS (2000) Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells. Int J Cancer 88:566–574PubMedCrossRefGoogle Scholar
  33. 33.
    Alper O, Bergmann-Leitner ES, Bennett TA, Hacker NF, Stromberg K, Stetler-Stevenson WG (2001) Epidermal growth factor receptor signaling and the invasive phenotype of ovarian carcinoma cells. J Natl Cancer Inst 93:1375–1384PubMedCrossRefGoogle Scholar
  34. 34.
    Chan JK, Pham H, You XJ, Cloven NG, Burger RA, Rose GS, Van Nostrand K, Korc M, Disaia PJ, Fan H (2005) Suppression of ovarian cancer cell tumorigenicity and evasion of cisplatin resistance using a truncated epidermal growth factor receptor in a rat model. Cancer Res 65:3243–3248PubMedCrossRefGoogle Scholar
  35. 35.
    Ferrandina G, Ranelletti FO, Lauriola L, Fanfani F, Legge F, Mottolese M, Nicotra MR, Natali PG, Zakut VH, Scambia G (2002) Cyclooxygenase-2 (COX-2), epidermal growth factor receptor (EGFR), and Her-2/neu expression in ovarian cancer. Gynecol Oncol 85:305–310PubMedCrossRefGoogle Scholar
  36. 36.
    Hsieh SS, Malerczyk C, Aigner A, Czubayko F (2000) ErbB-2 expression is rate-limiting for epidermal growth factor-mediated stimulation of ovarian cancer cell proliferation. Int J Cancer 86:644–651PubMedCrossRefGoogle Scholar
  37. 37.
    Christensen JG, Schreck RE, Chan E, Wang X, Yang C, Liu L, Cui J, Sun L, Wei J, Cherrington JM, Mendel DB (2001) High levels of HER-2 expression alter the ability of epidermal growth factor receptor (EGFR) family tyrosine kinase inhibitors to inhibit EGFR phosphorylation in vivo. Clin Cancer Res 7:4230–4238PubMedGoogle Scholar
  38. 38.
    Pack SD, Alper OM, Stromberg K, Augustus M, Ozdemirli M, Miermont AM, Klus G, Rusin M, Slack R, Hacker NF, Ried T, Szallasi Z, Alper O (2004) Simultaneous suppression of epidermal growth factor receptor and c-erbB-2 reverses aneuploidy and malignant phenotype of a human ovarian carcinoma cell line. Cancer Res 64:789–794PubMedCrossRefGoogle Scholar
  39. 39.
    Zhou H, Kim YS, Peletier A, McCall W, Earp HS, Sartor CI (2004) Effects of the EGFR/HER2 kinase inhibitor GW572016 on EGFR- and HER2-overexpressing breast cancer cell line proliferation, radiosensitization, and resistance. Int J Radiat Oncol Biol Phys 58:344–352PubMedGoogle Scholar
  40. 40.
    Spector NL, Xia W, Burris H 3rd, Hurwitz H, Dees EC, Dowlati A, O’Neil B, Overmoyer B, Marcom PK, Blackwell KL, Smith DA, Koch KM, Stead A, Mangum S, Ellis MJ, Liu L, Man AK, Bremer TM, Harris J, Bacus S (2005) Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J Clin Oncol 23:2502–2512PubMedCrossRefGoogle Scholar
  41. 41.
    Bauer S, Corless CL, Heinrich MC, Dirsch O, Antoch G, Kanja J, Seeber S, Schutte J (2003) Response to imatinib mesylate of a gastrointestinal stromal tumor with very low expression of KIT. Cancer Chemother Pharmacol 51:261–265PubMedGoogle Scholar
  42. 42.
    Shigematsu H, Takahashi T, Nomura M, Majmudar K, Suzuki M, Lee H, Wistuba II, Fong KM, Toyooka S, Shimizu N, Fujisawa T, Minna JD, Gazdar AF (2005) Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res 65:1642–1646PubMedCrossRefGoogle Scholar
  43. 43.
    Heinrich MC, Corless CL, Demetri GD, Blanke CD, von Mehren M, Joensuu H, McGreevey LS, Chen CJ, Van den Abbeele AD, Druker BJ, Kiese B, Eisenberg B, Roberts PJ, Singer S, Fletcher CD, Silberman S, Dimitrijevic S, Fletcher JA, Singer G, Schraml P, Belgard C, Raggi A, Dirnhofer S, Went P, Mihatsch MJ, Moch H (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21:4342–4349CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Heini Lassus
    • 1
    • 2
  • Harri Sihto
    • 3
  • Arto Leminen
    • 5
  • Heikki Joensuu
    • 3
  • Jorma Isola
    • 4
  • Nina N. Nupponen
    • 3
  • Ralf Butzow
    • 1
    • 6
  1. 1.Department of Obstetrics and GynecologyHelsinki University Central HospitalHelsinkiFinland
  2. 2.Department of Obstetrics and GynecologyJorvi HospitalEspooFinland
  3. 3.Laboratory of Molecular Oncology, Department of OncologyHelsinki University Central Hospital, University of Helsinki, BiomedicumHelsinkiFinland
  4. 4.Institute of Medical TechnologyUniversity of TampereTampereFinland
  5. 5.Department of Obstetrics and GynecologyHelsinki University Central HospitalHelsinkiFinland
  6. 6.Department of PathologyUniversity of HelsinkiHelsinki 00014Finland

Personalised recommendations