Journal of Molecular Medicine

, Volume 84, Issue 6, pp 469–477

Fibrin(ogen) and its fragments in the pathophysiology and treatment of myocardial infarction

  • Kai Zacharowski
  • Paula Zacharowski
  • Sonja Reingruber
  • Peter Petzelbauer
Review

Abstract

The occlusion of a coronary artery leads to ischemia of the myocardium, while permanent occlusion results in cell death and myocardial dysfunction. Early restoration of blood flow is the only means to reduce or prevent myocardial necrosis, but—paradoxically—reperfusion itself contributes to injury of the heart. In animal models, this phenomenon is well described, and there are many different unrelated approaches to reduce reperfusion injury. In humans, however, pharmacological interventions have so far failed to reduce myocardial reperfusion injury. We summarize the pathogenesis of reperfusion injury, detailing the role of fibrin(ogen) and its derivatives. Moreover, we introduce a new concept for fibrin derivatives as potential targets for reperfusion therapy.

Keywords

15–42 Fibrin fragments Endothelial cell VE-cadherin Leukocyte transmigration Myocardial infarction and reperfusion injury 

References

  1. 1.
    Tennant R, Wiggers C (1935) The effect of coronary occlusion on myocardial contraction. Am J Physiol 112:351–361Google Scholar
  2. 2.
    Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H (1960) Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol 70:68–78PubMedGoogle Scholar
  3. 3.
    Taylor RR (1971) Myocardial potassium and ventricular arrhythmias following reperfusion of ischaemic myocardium. Aust N Z J Med 1(2):114–120PubMedGoogle Scholar
  4. 4.
    Hearse DJ, Chain EB (1973) Effect of glucose on enzyme release from, and recovery of, the anoxic myocardium. Recent Adv Stud Cardiac Struct Metab 3:763–772PubMedGoogle Scholar
  5. 5.
    Hearse DJ, Humphrey SM, Chain EB (1973) Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: a study of myocardial enzyme release. J Mol Cell Cardiol 5(4):395–407PubMedCrossRefGoogle Scholar
  6. 6.
    Hearse DJ, Humphrey SM, Nayler WG, Slade A, Border D (1975) Ultrastructural damage associated with reoxygenation of the anoxic myocardium. J Mol Cell Cardiol 7(5):315–324PubMedCrossRefGoogle Scholar
  7. 7.
    Hearse DJ, Humphrey SM, Bullock GR (1978) The oxygen paradox and the calcium paradox: two facets of the same problem? J Mol Cell Cardiol 10(7):641–668PubMedCrossRefGoogle Scholar
  8. 8.
    Ambrosio G, Becker LC, Hutchins GM, Weisman HF, Weisfeldt ML (1986) Reduction in experimental infarct size by recombinant human superoxide dismutase: insights into the pathophysiology of reperfusion injury. Circulation 74(6):1424–1433PubMedGoogle Scholar
  9. 9.
    Wolfe CL, Moseley ME, Wikstrom MG, Sievers RE, Wendland MF, Dupon JW, Finkbeiner WE, Lipton MJ, Parmley WW, Brasch RC (1989) Assessment of myocardial salvage after ischemia and reperfusion using magnetic resonance imaging and spectroscopy. Circulation 80(4):969–982PubMedGoogle Scholar
  10. 10.
    Farb A, Kolodgie FD, Jenkins M, Virmani R (1993) Myocardial infarct extension during reperfusion after coronary artery occlusion: pathologic evidence. J Am Coll Cardiol 21(5):1245–1253PubMedGoogle Scholar
  11. 11.
    Zacharowski K, Frank S, Otto M, Chatterjee PK, Cuzzocrea S, Hafner G, Pfeilschifter J, Thiemermann C (2000) Lipoteichoic acid induces delayed protection in the rat heart: a comparison with endotoxin. Arterioscler Thromb Vasc Biol 20(6):1521–1528PubMedGoogle Scholar
  12. 12.
    Zacharowski K, Olbrich A, Piper J, Hafner G, Kondo K, Thiemermann C (1999) Selective activation of the prostanoid EP(3) receptor reduces myocardial infarct size in rodents. Arterioscler Thromb Vasc Biol 19(9):2141–2147PubMedGoogle Scholar
  13. 13.
    Petzelbauer P, Zacharowski PA, Miyazaki Y, Friedl P, Wickenhauser G, Castellino FJ, Groger M, Wolff K, Zacharowski K (2005) The fibrin-derived peptide B Beta(15–42) protects the myocardium against ischemia–reperfusion injury. Nat Med 11(3):298–304PubMedCrossRefGoogle Scholar
  14. 14.
    Fan GC, Ren X, Qian J, Yuan Q, Nicolaou P, Wang Y, Jones WK, Chu G, Kranias EG (2005) Novel cardioprotective role of a small heat-shock protein, Hsp20, against ischemia/reperfusion injury. Circulation 111(14):1792–1799PubMedCrossRefGoogle Scholar
  15. 15.
    Armaganian L, Kam G, Eisenberg PR, Schechtman KB, Abendschein DR (2000) Role of tissue factor-mediated coagulation in ischemia/reperfusion-induced injury of Langendorf-perfused rabbit hearts. Coron Artery Dis 11(6):481–487PubMedCrossRefGoogle Scholar
  16. 16.
    Balke CW, Kaplinsky E, Michelson EL, Naito M, Dreifus LS (1981) Reperfusion ventricular tachyarrhythmias — correlation with antecedent coronary-artery occlusion tachyarrhythmias and duration of myocardial ischemia. Am Heart J 101(4):449–456PubMedCrossRefGoogle Scholar
  17. 17.
    Manning AS, Hearse DJ (1984) Reperfusion-induced arrhythmias — mechanisms and prevention. J Mol Cell Cardiol 16(6):497–518PubMedCrossRefGoogle Scholar
  18. 18.
    Bril A (1996) Cellular mechanisms of cardiac arrhythmias in the ischemic and reperfused heart. EXS 76:135–153PubMedGoogle Scholar
  19. 19.
    Ruiz Petrich E, Schanne OF, Ponce Zumino A (1996) Electrophysiological responses to ischemia and reperfusion. EXS 76:115–133PubMedGoogle Scholar
  20. 20.
    Grech ED, Ramsdale DR (1994) Termination of reperfusion arrhythmia by coronary-artery occlusion. Br Heart J 72(1):94–95PubMedCrossRefGoogle Scholar
  21. 21.
    Vaturi M, Birnbaum Y (2000) The use of the electrocardiogram to identify epicardial coronary and tissue reperfusion in acute myocardial infarction. J Thromb Thrombolysis 10(2):137–147PubMedCrossRefGoogle Scholar
  22. 22.
    Woodcock EA, Arthur JF, Matkovich SJ (2000) Inositol 1,4,5-trisphosphate and reperfusion arrhythmias. Clin Exp Pharmacol Physiol 27(9):734–737PubMedCrossRefGoogle Scholar
  23. 23.
    Matsumura K, Jeremy RW, Schaper J, Becker LC (1998) Progression of myocardial necrosis during reperfusion of ischemic myocardium. Circulation 97(8):795–804PubMedGoogle Scholar
  24. 24.
    Gross GJ, Kersten JR, Warltier DC (1999) Mechanisms of postischemic contractile dysfunction. Ann Thorac Surg 68(5):1898–1904PubMedCrossRefGoogle Scholar
  25. 25.
    Heusch G, Schulz R, Rahimtoola SH (2005) Myocardial hibernation: a delicate balance. Am J Physiol Heart Circ Physiol 288(3):H984–H999PubMedCrossRefGoogle Scholar
  26. 26.
    Bolli R (1990) Mechanism of myocardial “stunning”. Circulation 82(3):723–738PubMedGoogle Scholar
  27. 27.
    Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94(4):1621–1628PubMedCrossRefGoogle Scholar
  28. 28.
    Kerr JF (2002) History of the events leading to the formulation of the apoptosis concept. Toxicology 181–182:471–474PubMedCrossRefGoogle Scholar
  29. 29.
    Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94(4):1621–1628PubMedCrossRefGoogle Scholar
  30. 30.
    Taki J, Higuchi T, Kawashima A, Tait JF, Kinuya S, Muramori A, Matsunari I, Nakajima K, Tonami N, Strauss HW (2004) Detection of cardiomyocyte death in a rat model of ischemia and reperfusion using 99mTc-labeled Annexin V. J Nucl Med 45(9):1536–1541PubMedGoogle Scholar
  31. 31.
    Bromme HJ, Holtz J (1996) Apoptosis in the heart: when and why? Mol Cell Biochem 163–164:261–275PubMedCrossRefGoogle Scholar
  32. 32.
    Lopez-Neblina F, Toledo AH, Toledo-Pereyra LH (2005) Molecular biology of apoptosis in ischemia and reperfusion. J Invest Surg 18(6):335–350PubMedCrossRefGoogle Scholar
  33. 33.
    Horstick G, Berg O, Heimann A, Darius H, Lehr HA, Bhakdi S, Kempski O, Meyer J (1999) Surgical procedure affects physiological parameters in rat myocardial ischemia: need for mechanical ventilation. Am J Physiol 276(2 Pt 2):H472–H479PubMedGoogle Scholar
  34. 34.
    Christensen CW, Rieder MA, Silverstein EL, Gencheff NE (1995) Magnesium sulfate reduces myocardial infarct size when administered before but not after coronary reperfusion in a canine model. Circulation 92(9):2617–2621PubMedGoogle Scholar
  35. 35.
    Morita K, Ihnken K, Buckberg GD, Sherman MP, Young HH, Ignarro LJ (1994) Role of controlled cardiac reoxygenation in reducing nitric oxide production and cardiac oxidant damage in cyanotic infantile hearts. J Clin Invest 93(6):2658–2666PubMedCrossRefGoogle Scholar
  36. 36.
    Hori M, Kitakaze M, Sato H, Takashima S, Iwakura K, Inoue M, Kitabatake A, Kamada T (1991) Staged reperfusion attenuates myocardial stunning in dogs. Role of transient acidosis during early reperfusion. Circulation 84(5):2135–2145PubMedGoogle Scholar
  37. 37.
    Okamoto F, Allen BS, Buckberg GD, Bugyi H, Leaf J (1986) Reperfusion conditions: importance of ensuring gentle versus sudden reperfusion during relief of coronary occlusion. J Thorac Cardiovasc Surg 92(3 Pt 2):613–620PubMedGoogle Scholar
  38. 38.
    Pisarenko OI, Shulzhenko VS, Studneva IM, Kapelko VI (1993) Effects of gradual reperfusion on postischemic metabolism and functional recovery of isolated guinea pig heart. Biochem Med Metab Biol 50(1):127–134PubMedCrossRefGoogle Scholar
  39. 39.
    Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136PubMedGoogle Scholar
  40. 40.
    Vinten-Johansen J, Zhao ZQ, Zatta AJ, Kin H, Halkos ME, Kerendi F (2005) Postconditioning—a new link in nature’s armor against myocardial ischemia–reperfusion injury. Basic Res Cardiol 100(4):295–310PubMedCrossRefGoogle Scholar
  41. 41.
    Kin H, Zhao ZQ, Sun HY, Wang NP, Corvera JS, Halkos ME, Kerendi F, Guyton RA, Vinten-Johansen J (2004) Postconditioning attenuates myocardial ischemia–reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res 62(1):74–85, 1–4PubMedCrossRefGoogle Scholar
  42. 42.
    Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285(2):H579–H588PubMedGoogle Scholar
  43. 43.
    Grech ED, Dodd NJ, Jackson MJ, Morrison WL, Faragher EB, Ramsdale DR (1996) Evidence for free radical generation after primary percutaneous transluminal coronary angioplasty recanalization in acute myocardial infarction. Am J Cardiol 77(2):122–127PubMedCrossRefGoogle Scholar
  44. 44.
    Lee C, Dhalla NS, Hryshko LV (2005) Therapeutic potential of novel Na+–Ca2+ exchange inhibitors in attenuating ischemia–reperfusion injury. Can J Cardiol 21(6):509–516PubMedGoogle Scholar
  45. 45.
    Gaffney PJ (2001) Fibrin degradation products. A review of structures found in vitro and in vivo. Ann N Y Acad Sci 936:594–610PubMedGoogle Scholar
  46. 46.
    Loike JD, Sodeik B, Cao L, Leucona S, Weitz JI, Detmers PA, Wright SD, Silverstein SC (1991) CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the A alpha chain of fibrinogen. Proc Natl Acad Sci U S A 88(3):1044–1048PubMedCrossRefGoogle Scholar
  47. 47.
    Olexa SA, Budzynski AZ, Doolittle RF, Cottrell BA, Greene TC (1981) Structure of fragment E species from human cross-linked fibrin. Biochemistry 20(21):6139–6145PubMedCrossRefGoogle Scholar
  48. 48.
    Wilhelmsen L, Svardsudd K, Korsan-Bengtsen K, Larsson B, Welin L, Tibblin G (1984) Fibrinogen as a risk factor for stroke and myocardial infarction. N Engl J Med 311(8):501–505PubMedGoogle Scholar
  49. 49.
    Kannel WB, Wolf PA, Castelli WP, D’Agostino RB (1987) Fibrinogen and risk of cardiovascular disease. The framingham study. JAMA 258(9):1183–1186PubMedCrossRefGoogle Scholar
  50. 50.
    Meade TW, Ruddock V, Stirling Y, Chakrabarti R, Miller GJ (1993) Fibrinolytic activity, clotting factors, and long-term incidence of ischaemic heart disease in the Northwick Park Heart Study. Lancet 342(8879):1076–1079PubMedCrossRefGoogle Scholar
  51. 51.
    Tataru MC, Heinrich J, Junker R, Schulte H, von Eckardstein A, Assmann G, Koehler ED (1999) Dimers in relation to the severity of arteriosclerosis in patients with stable angina pectoris after myocardial infarction. Eur Heart J 20(20):1493–1502PubMedCrossRefGoogle Scholar
  52. 52.
    Tataru MC, Schulte H, von Eckardstein A, Heinrich J, Assmann G, Koehler E (2001) Plasma fibrinogen in relation to the severity of arteriosclerosis in patients with stable angina pectoris after myocardial infarction. Coron Artery Dis 12(3):157–165PubMedCrossRefGoogle Scholar
  53. 53.
    Shitrit D, Bar-Gil, Shitrit A, Rudensky B, Sulkes J, Gutterer N, Zviony D (2004) Role of ELISA D-Dimer test in patients with unstable angina pectoris presenting at the emergency department with a normal electrocardiogram. Am J Hematol 77(2):147–150PubMedCrossRefGoogle Scholar
  54. 54.
    Kontny F, Dempfle CE, Abildgaard U (1999) Fibrin monomer antigen: a novel marker of mortality in acute myocardial infarction. Eur Heart J 20(11):808–812PubMedCrossRefGoogle Scholar
  55. 55.
    Saigo M, Waters DD, Abe S, Biro S, Minagoe S, Maruyama I, Tei C (2004) Soluble fibrin, C-reactive protein, fibrinogen, factor VII, antithrombin, proteins C and S, tissue factor, D-Dimer, and prothrombin fragment 1 + 2 in men with acute myocardial infarctiona</=45 years of age. Am J Cardiol 94(11):1410–1413PubMedCrossRefGoogle Scholar
  56. 56.
    Perez RL, Roman J (1995) Fibrin enhances the expression of IL-1 beta by human peripheral blood mononuclear cells. Implications in pulmonary inflammation. J Immunol 154(4):1879–1887PubMedGoogle Scholar
  57. 57.
    Qi J, Kreutzer DL (1995) Fibrin activation of vascular endothelial cells. Induction of IL-8 expression. J Immunol 155(2):867–876PubMedGoogle Scholar
  58. 58.
    Harley SL, Sturge J, Powell JT (2000) Regulation by fibrinogen and its products of intercellular adhesion molecule-1 expression in human saphenous vein endothelial cells. Arterioscler Thromb Vasc Biol 20(3):652–658PubMedGoogle Scholar
  59. 59.
    Szaba FM, Smiley ST (2002) Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood 99(3):1053–1059PubMedCrossRefGoogle Scholar
  60. 60.
    Drew AF, Tucker HL, Liu H, Witte DP, Degen JL, Tipping PG (2001) Crescentic glomerulonephritis is diminished in fibrinogen-deficient mice. Am J Physiol Renal Physiol 281(6):F1157–F1163PubMedGoogle Scholar
  61. 61.
    Drew AF, Liu H, Davidson JM, Daugherty CC, Degen JL (2001) Wound-healing defects in mice lacking fibrinogen. Blood 97(12):3691–3698PubMedCrossRefGoogle Scholar
  62. 62.
    Wilberding JA, Ploplis VA, McLennan L, Liang Z, Cornelissen I, Feldman M, Deford ME, Rosen ED, Castellino FJ (2001) Development of pulmonary fibrosis in fibrinogen-deficient mice. Ann N Y Acad Sci 936:542–548PubMedGoogle Scholar
  63. 63.
    Palumbo JS, Potter JM, Kaplan LS, Talmage K, Jackson DG, Degen JL (2002) Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice. Cancer Res 62(23):6966–6972PubMedGoogle Scholar
  64. 64.
    Altieri DC, Agbanyo FR, Plescia J, Ginsberg MH, Edgington TS, Plow EFA (1990) Unique recognition site mediates the interaction of fibrinogen with the leukocyte integrin Mac-1 (CD11b/CD18). J Biol Chem 265(21):12119–12122PubMedGoogle Scholar
  65. 65.
    Altieri DC, Plescia J, Plow EF (1993) The structural motif glycine 190-valine 202 of the fibrinogen gamma chain interacts with CD11b/CD18 integrin (Alpha M Beta 2, Mac-1) and promotes leukocyte adhesion. J Biol Chem 268(3):1847–1853PubMedGoogle Scholar
  66. 66.
    Altieri DC, Duperray A, Plescia J, Thornton GB, Languino LR (1995) Structural recognition of a novel fibrinogen gamma chain sequence (117–133) by intercellular adhesion molecule-1 mediates leukocyte–endothelium interaction. J Biol Chem 270(2):696–699PubMedCrossRefGoogle Scholar
  67. 67.
    Farrell DH, Thiagarajan P, Chung DW, Davie EW (1992) Role of fibrinogen alpha and gamma chain sites in platelet aggregation. Proc Natl Acad Sci U S A 89(22):10729–10732PubMedCrossRefGoogle Scholar
  68. 68.
    Suehiro K, Gailit J, Plow EF (1997) Fibrinogen is a ligand for integrin alpha5beta1 on endothelial cells. J Biol Chem 272(8):5360–5366PubMedCrossRefGoogle Scholar
  69. 69.
    Yokoyama K, Zhang XP, Medved L, Takada Y (1999) Specific binding of integrin alpha v beta 3 to the fibrinogen gamma and alpha E chain C-terminal domains. Biochemistry 38(18):5872–5877PubMedCrossRefGoogle Scholar
  70. 70.
    Bach TL, Barsigian C, Yaen CH, Martinez J (1998) Endothelial cell VE-cadherin functions as a receptor for the Beta15-42 sequence of fibrin. J Biol Chem 273(46):30719–30728PubMedCrossRefGoogle Scholar
  71. 71.
    Gorlatov S, Medved L (2002) Interaction of fibrin(ogen) with the endothelial cell receptor VE-cadherin: mapping of the receptor-binding site in the NH2-terminal portions of the fibrin beta chains. Biochemistry 41(12):4107–4116PubMedCrossRefGoogle Scholar
  72. 72.
    Sherman DG, Atkinson RP, Chippendale T, Levin KA, Ng K, Futrell N, Hsu CY, Levy DE (2000) Intravenous ancrod for treatment of acute ischemic stroke: the STAT study: a randomized controlled trial. Stroke treatment with ancrod trial. JAMA 283(18):2395–2403PubMedCrossRefGoogle Scholar
  73. 73.
    Simpson PJ, Schelm JA, Smith GF (1991) Therapeutic defibrination with ancrod does not protect canine myocardium from reperfusion injury. J Pharmacol Exp Ther 256(2):780–786PubMedGoogle Scholar
  74. 74.
    Dempfle CE, Argiriou S, Kucher K, Muller-Peltzer H, Rubsamen K, Heene DL (2000) Analysis of fibrin formation and proteolysis during intravenous administration of ancrod. Blood 96(8):2793–2802PubMedGoogle Scholar
  75. 75.
    Erlich JH, Boyle EM, Labriola J, Kovacich JC, Santucci RA, Fearns C, Morgan EN, Yun W, Luther T, Kojikawa O, Martin TR, Pohlman TH, Verrier ED, Mackman N (2000) Inhibition of the tissue factor-thrombin pathway limits infarct size after myocardial ischemia–reperfusion injury by reducing inflammation. Am J Pathol 157(6):1849–1862PubMedGoogle Scholar
  76. 76.
    Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407(6801):258–264PubMedCrossRefGoogle Scholar
  77. 77.
    Chalupowicz DG, Chowdhury ZA, Bach TL, Barsigian C, Martinez J (1995) Fibrin II induces endothelial cell capillary tube formation. J Cell Biol 130(1):207–215PubMedCrossRefGoogle Scholar
  78. 78.
    Hamaguchi M, Bunce LA, Sporn LA, Francis CW (1993) Spreading of platelets on fibrin is mediated by the Amino Terminus of the beta chain including peptide beta 15-42. Blood 81(9):2348–2356PubMedGoogle Scholar
  79. 79.
    Ribes JA, Ni F, Wagner DD, Francis CW (1989) Mediation of fibrin-induced release of Von Willebrand Factor from cultured endothelial cells by the fibrin beta chain. J Clin Invest 84(2):435–442PubMedCrossRefGoogle Scholar
  80. 80.
    Bolli R, Becker L, Gross G, Mentzer R Jr, Balshaw D, Lathrop DA (2004) Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res 95(2):125–134PubMedCrossRefGoogle Scholar
  81. 81.
    Libby P, Maroko PR, Bloor CM, Sobel BE, Braunwald E (1973) Reduction of experimental myocardial infarct size by corticosteroid administration. J Clin Invest 52(3):599–607PubMedCrossRefGoogle Scholar
  82. 82.
    Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53(1):31–47PubMedCrossRefGoogle Scholar
  83. 83.
    Lin ZQ, Kondo T, Ishida Y, Takayasu T, Mukaida N (2003) Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J Leukoc Biol 73(6):713–721PubMedCrossRefGoogle Scholar
  84. 84.
    Entman ML, Youker KA, Frangogiannis N, Lakshminarayanan V, Nossuli T, Evans A, Kurrelmeyer K, Mann DL, Smith CW (2000) Is inflammation good for the ischemic heart–perspectives beyond the ordinary. Z Kardiol 89(Suppl 9):IX/82–IX/87Google Scholar
  85. 85.
    Zacharowski K, Olbrich A, Otto M, Hafner G, Thiemermann C (1999) Effects of the prostanoid EP3-receptor agonists M&B 28767 and GR 63799X on infarct size caused by regional myocardial ischaemia in the anaesthetized rat. Br J Pharmacol 126(4):849–858PubMedCrossRefGoogle Scholar
  86. 86.
    Gaffney PJ (2001) Fibrin degradation products. A review of structures found in vitro and in vivo. Ann N Y Acad Sci 936:594–610PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Kai Zacharowski
    • 1
  • Paula Zacharowski
    • 1
  • Sonja Reingruber
    • 2
  • Peter Petzelbauer
    • 3
  1. 1.Molecular Cardioprotection and Inflammation Group, Department of AnesthesiaUniversity Hospital of DüsseldorfDüsseldorfGermany
  2. 2.Fibrex Medical Research and DevelopmentWienAustria
  3. 3.Department of General DermatologyMedical UniversityWienAustria

Personalised recommendations