Journal of Molecular Medicine

, Volume 84, Issue 7, pp 583–594

Defective glycosylation of decorin and biglycan, altered collagen structure, and abnormal phenotype of the skin fibroblasts of an Ehlers–Danlos syndrome patient carrying the novel Arg270Cys substitution in galactosyltransferase I (β4GalT-7)

  • Daniela G. Seidler
  • Muhammad Faiyaz-Ul-Haque
  • Uwe Hansen
  • George W. Yip
  • Syed H. E. Zaidi
  • Ahmad S. Teebi
  • Ludwig Kiesel
  • Martin Götte
Original Article

Abstract

The Ehlers–Danlos syndrome (EDS) is a heterogeneous group of connective tissue disorders affecting skin and joint function. Molecular defects in extracellular matrix proteins, including collagen (type I, III, and V) and tenascin X are associated with different forms of EDS. Compound heterozygous mutations in the B4GALT7 gene, resulting in aberrant glycosylation of the dermatan sulfate proteoglycan decorin, had been described in a single patient affected with the progeroid form of EDS. We have studied the molecular phenotype of decorin, biglycan, and collagen type I containing fibrils in skin fibroblasts of a patient carrying the novel homozygous C808T point mutation in the B4GALT7 gene, which causes an Arg270Cys substitution in β4GalT-7. Compared to control fibroblasts, galactosyltransferase activity in β4GalT-7Arg270Cys cells was approximately three times reduced over a temperature range of 25–41°C. Pulse-chase experiments and confocal microscopy demonstrated that synthesis and secretion of decorin were normal in β4GalT-7Arg270Cys cells. However, about 50% of decorin were synthesized as a protein core in addition to its proteoglycan form. Biglycan was found in a monoglycanated form in addition to its mature form. Glycosaminoglycan chains were of the dermatan/chondroitin sulfate type both in β4GalT-7Arg270Cys and control cells, and epimerization was reduced for decorin and biglycan. Compared to control cells, β4GalT-7Arg270Cys cells showed altered, highly spread or stretched phenotypes and decreased proliferation rates. At the ultrastructural level, an intracellular accumulation of multiple secondary lysosomes and degenerative vacuoles was seen in β4GalT-7Arg270Cys cells. Furthermore, the collagen suprastructures were altered in the β4GalT-7Arg270Cys cells. The reduced β4GalT-7 activity resulting in defective glycosylation of decorin and biglycan may be responsible for the complex molecular pathology in β4GalT-7 deficient EDS patients, given the role of these proteoglycans in bone formation, collagen fibrillogenesis, and skeletal muscle development.

Keywords

Xylosylprotein 4-beta-galactosyltransferase Ehlers–Danlos syndrome Dermatan sulfate proteoglycan Connective tissue diseases Galactosyltransferases Glycosaminoglycans 

References

  1. 1.
    Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652CrossRefPubMedGoogle Scholar
  2. 2.
    Xu T, Bianco P, Fisher LW, Longenecker G, Smith E, Goldstein S, Bonadio J, Boskey A, Heegaard AM, Sommer B, Satomura K, Dominguez P, Zhao C, Kulkarni AB, Robey PG, Young MF (1998) Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 20:78–82CrossRefPubMedGoogle Scholar
  3. 3.
    Schönherr E, Sunderkötter C, Iozzo RV, Schaefer L (2005) Decorin, a novel player in the insulin-like growth factor system. J Biol Chem 280:15767–15772CrossRefPubMedGoogle Scholar
  4. 4.
    Corsi A, Xu T, Chen XD, Boyde A, Liang J, Mankani M, Sommer B, Iozzo RV, Eichstetter I, Robey PG, Bianco P, Young MF (2002) Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers–Danlos-like changes in bone and other connective tissues. J Bone Miner Res 17:1180–1189PubMedCrossRefGoogle Scholar
  5. 5.
    Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136:729–743CrossRefPubMedGoogle Scholar
  6. 6.
    Kresse H, Rosthoj S, Quentin E, Hollmann J, Glössl J, Okada S, Tonnesen T (1987) Glycosaminoglycan-free small proteoglycan core protein is secreted by fibroblasts from a patient with a syndrome resembling progeroid. Am J Hum Genet 41:436–453PubMedGoogle Scholar
  7. 7.
    Quentin E, Gladen A, Rodèn L, Kresse H (1990) A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. Proc Natl Acad Sci USA 87:1342–1346PubMedCrossRefGoogle Scholar
  8. 8.
    Okajima T, Fukumoto S, Furukawa K, Urano T (1999) Molecular basis for the progeroid variant of Ehlers–Danlos syndrome. Identification and characterization of two mutations in galactosyltransferase I gene. J Biol Chem 274:28841–28844CrossRefPubMedGoogle Scholar
  9. 9.
    Almeida R, Levery SB, Mandel U, Kresse H, Schwientek T, Bennett EP, Clausen H (1999) Cloning and expression of a proteoglycan UDP-galactose:beta-xylose beta1,4-galactosyltransferase I. A seventh member of the human beta4-galactosyltransferase gene family. J Biol Chem 274:26165–26171CrossRefPubMedGoogle Scholar
  10. 10.
    Götte M, Kresse H (2005) Defective glycosaminoglycan substitution of decorin in a patient with progeroid syndrome is a direct consequence of two point mutations in the galactosyltransferase I (β4Gal-T7) gene. Biochem Genet 43:67–79CrossRefGoogle Scholar
  11. 11.
    Faiyaz-Ul-Haque M, Zaidi SH, Al Ali M, Al Mureikhi MS, Kennedy S, Al Thani G, Tsui LC, Teebi A (2004) A novel missense mutation in the galactosyltransferase-I (B4GALT7) gene in a family exhibiting facioskeletal anomalies and Ehlers–Danlos syndrome resembling the progeroid type. Am J Med Genet 128A:39–45CrossRefGoogle Scholar
  12. 12.
    Walker LC, Teebi AS, Marini JC, De Paepe A, Malfait F, Atsawasuwan P, Yamauchi M, Yeowell HN (2004) Decreased expression of lysyl hydroxylase 2 (LH2) in skin fibroblasts from three Ehlers–Danlos patients does not result from mutations in either the coding or proximal promoter region of the LH2 gene. Mol Genet Metab 83:312–321CrossRefPubMedGoogle Scholar
  13. 13.
    Seidler DG, Schaefer L, Robenek H, Iozzo RV, Kresse H, Schönherr E (2005) A physiologic three-dimensional cell culture system to investigate the role of decorin in matrix organisation and cell survival. Biochem Biophys Res Commun 332:1162–1170CrossRefPubMedGoogle Scholar
  14. 14.
    Nareyeck G, Seidler DG, Troyer D, Rauterberg J, Kresse H, Schönherr E (2004) Differential interactions of decorin and decorin mutants with type I and type VI collagens. Eur J Biochem 27:3389–3398CrossRefGoogle Scholar
  15. 15.
    Kresse H, Seidler DG, Müller M, Breuer E, Hausser H, Roughley PJ, Schönherr E (2001) Different usage of the glycosaminoglycan attachment sites of biglycan. J Biol Chem 276:13411–13416CrossRefPubMedGoogle Scholar
  16. 16.
    Zamfir A, Seidler DG, Schönherr E, Kresse H, Peter-Katalinic J (2004) On-line sheathless capillary electrophoresis/nanoelectrospray ionization-tandem mass spectrometry for the analysis of glycosaminoglycan oligosaccharides. Electrophoresis 25:2010–2016CrossRefPubMedGoogle Scholar
  17. 17.
    Seidler DG, Breuer E, Grande-Allen KJ, Hascall VC, Kresse H (2002) Core protein dependence of epimerization of glucuronosyl residues in galactosaminoglycans. J Biol Chem 277:42409–42416CrossRefPubMedGoogle Scholar
  18. 18.
    Kassner A, Hansen U, Miosge N, Reinhardt DP, Aigner T, Bruckner-Tuderman L, Bruckner P, Grässel S (2003) Discrete integration of collagen XVI into tissue-specific collagen fibrils or beaded microfibrils. Matrix Biol 22:131–143CrossRefPubMedGoogle Scholar
  19. 19.
    Hayashi Y, Liu C-Y, Jester JJ, Hayashi M, Wang I-J, Funderburgh JL, Saika S, Roughley PJ, Kao CW-C, Kao WW-Y (2005) Excess biglycan causes eyelid malformation by perturbing muscle development and TGF-alpha signaling. Dev Biol 277:222–234CrossRefPubMedGoogle Scholar
  20. 20.
    Schaefer L, Babelova A, Kiss E, Hausser HJ, Baliova M, Krzyzankova M, Marsche G, Young MF, Mihalik D, Götte M, Malle E, Schaefer RM, Gröne HJ (2005) The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest 115:2223–2233CrossRefPubMedGoogle Scholar
  21. 21.
    Neame PJ, Choi HU, Rosenberg LC (1989) The primary structure of the core protein of the small, leucine-rich proteoglycan (PG I) from bovine articular cartilage. J Biol Chem 264:8653–8661PubMedGoogle Scholar
  22. 22.
    Taylor KR, Rudisill JA, Gallo RL (2005) Structural and sequence motifs in dermatan sulfate for promoting fibroblast growth factor-2 (FGF-2) and FGF-7 activity. J Biol Chem 280:5300–5306CrossRefPubMedGoogle Scholar
  23. 23.
    Zou XH, Foong WC, Cao T, Bay BH, Ouyang HW, Yip GW (2004) Chondroitin sulfate in palatal wound healing. J Dent Res 83:880–885PubMedCrossRefGoogle Scholar
  24. 24.
    Elenius V, Götte M, Reizes O, Elenius K, Bernfield M (2004) Inhibition by the soluble syndecan-1 ectodomains delays wound repair in mice overexpressing syndecan-1. J Biol Chem 279:41928–41935CrossRefPubMedGoogle Scholar
  25. 25.
    Fushimi H, Kameyama M, Shinkai H (1989) Deficiency of the core proteins of dermatan sulphate proteoglycans in a variant form of Ehlers–Danlos syndrome. J Int Med 226:409–416Google Scholar
  26. 26.
    Wu J, Utani A, Endo H, Shinkai H (2001) Deficiency of the decorin core protein in the variant form of Ehlers–Danlos syndrome with chronic skin ulcer. J Dermatol Sci 27:95–103CrossRefPubMedGoogle Scholar
  27. 27.
    Olguin HC, Santander C, Brandan E (2003) Inhibition of myoblast migration via decorin expression is critical for normal skeletal muscle differentiation. Dev Biol 259:209–224CrossRefPubMedGoogle Scholar
  28. 28.
    Vesentini S, Redaelli A, Montevecchi FM (2005) Estimation of the binding force of the collagen molecule-decorin core protein complex in collagen fibril. J Biomech 38:433–443CrossRefPubMedGoogle Scholar
  29. 29.
    Ferro DR, Provasoli A, Ragazzi M, Casu B, Torri G, Bossennec V, Perly B, Sinay P, Petitou M, Choay J (1990) Conformer populations of l-iduronic acid residues in glycosaminoglycan sequences. Carbohydr Res 195:157–167CrossRefPubMedGoogle Scholar
  30. 30.
    Zamfir A, Seidler DG, Kresse H, Peter-Katalinic J (2003) Structural investigation of chondroitin/dermatan sulfate oligosaccharides from human skin fibroblast decorin. Glycobiology 13:733–742CrossRefPubMedGoogle Scholar
  31. 31.
    Schönherr E, Witsch-Prehm P, Harrach B, Robenek H, Rauterberg J, Kresse H (1995) Interaction of biglycan with type I collagen. J Biol Chem 270:2776–2783CrossRefPubMedGoogle Scholar
  32. 32.
    Lee PH, Trowbridge JM, Taylor KR, Morhenn VB, Gallo RL (2004) Dermatan sulfate proteoglycan and glycosaminoglycan synthesis is induced in fibroblasts by transfer to a three-dimensional extracellular environment. J Biol Chem 279:48640–48646CrossRefPubMedGoogle Scholar
  33. 33.
    Alroy J, Jones MZ, Rutledge JC, Taylor JW, Toone J, Applegarth D, Hopwood JJ (1997) The ultrastructure of skin from a patient with mucopolysaccharidosis IIID. Acta Neuropathol (Berl) 93:210–213CrossRefGoogle Scholar
  34. 34.
    Ohmi K, Greenberg DS, Rajavel KS, Ryazantsev S, Li HH, Neufeld EF (2003) Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc Natl Acad Sci USA 100:1902–1907CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Daniela G. Seidler
    • 1
  • Muhammad Faiyaz-Ul-Haque
    • 2
  • Uwe Hansen
    • 1
  • George W. Yip
    • 3
  • Syed H. E. Zaidi
    • 5
  • Ahmad S. Teebi
    • 4
  • Ludwig Kiesel
    • 6
  • Martin Götte
    • 6
  1. 1.Department of Physiological Chemistry and PathobiochemistryMünster University HospitalMünsterGermany
  2. 2.Department of Pathology & Laboratory MedicineKing Faisal Specialist Hospital & Research CentreRiyadhSaudi Arabia
  3. 3.Department of AnatomyNational University of SingaporeSingaporeSingapore
  4. 4.Section of Clinical Genetics and DysmorphologyThe Hospital for Sick ChildrenTorontoCanada
  5. 5.Division of Cardiology, Department of MedicineUniversity Health NetworkTorontoCanada
  6. 6.Department of Obstetrics and GynecologyMünster University HospitalMünsterGermany

Personalised recommendations