Journal of Molecular Medicine

, Volume 84, Issue 4, pp 262–265 | Cite as

The lipid flux rheostat: implications of lipid trafficking pathways

  • Gerd SchmitzEmail author
  • Thomas Langmann

High triglyceride/low HDL syndromes are established predictors of coronary heart disease (CHD), and primary genetic defects associated with HDL deficiency states have been attributed to the ATP binding cassette transporter A1 (ABCA1) [1, 2, 3], apolipoprotein A-I (apoA-I), lecithin cholesteryl acyl transferase (LCAT), and Niemann–Pick C proteins 1 and 2 (NPC1, NPC2) [4]. Additional candidate genes with genetic variants affecting plasma HDL cholesterol levels include hepatic lipase and the genes of the apolipoprotein AI/CIII/AIV/AV gene cluster [5]. Moreover, relatively common DNA sequence variants in ABCA1 and apoE were recently identified to contribute to the variation in plasma levels of HDL cholesterol [6, 7].

Based on these interesting findings from genetic studies and to further elucidate the cellular and molecular mechanisms of lipid trafficking, the editor of Journal of Molecular Medicineinvited us to coedit two review articles, which present highly interesting overviews on...


  1. 1.
    Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, Diederich W, Drobnik W, Barlage S, Buchler C, Porsch-Ozcurumez M, Kaminski WE, Hahmann HW, Oette K, Rothe G, Aslanidis C, Lackner KJ, Schmitz G (1999) The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 22:347–351CrossRefPubMedGoogle Scholar
  2. 2.
    Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA, Molhuizen HO, Loubser O, Ouelette BF, Fichter K, Ashbourne-Excoffon KJ, Sensen CW, Scherer S, Mott S, Denis M, Martindale D, Frohlich J, Morgan K, Koop B, Pimstone S, Kastelein JJ, Hayden MR (1999) Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 22:336–345CrossRefPubMedGoogle Scholar
  3. 3.
    Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer HB, Duverger N, Denefle P, Assmann G (1999) Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 22:352–355CrossRefPubMedGoogle Scholar
  4. 4.
    Hovingh GK, de Groot E, van der SW, Boekholdt SM, Hutten BA, Kuivenhoven JA, Kastelein JJ (2005) Inherited disorders of HDL metabolism and atherosclerosis. Curr Opin Lipidol 16:139–145CrossRefPubMedGoogle Scholar
  5. 5.
    Cohen JC, Wang Z, Grundy SM, Stoesz MR, Guerra R (1994) Variation at the hepatic lipase and apolipoprotein AI/CIII/AIV loci is a major cause of genetically determined variation in plasma HDL cholesterol levels. J Clin Invest 94:2377–2384PubMedCrossRefGoogle Scholar
  6. 6.
    Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Tybjaerg-Hansen A (2004) Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J Clin Invest 114:1343–1353CrossRefPubMedGoogle Scholar
  7. 7.
    Frikke-Schmidt R, Sing CF, Nordestgaard BG, Tybjaerg-Hansen A (2004) Gender- and age-specific contributions of additional DNA sequence variation in the 5′ regulatory region of the APOE gene to prediction of measures of lipid metabolism. Hum Genet 115:331–345CrossRefPubMedGoogle Scholar
  8. 8.
    Boadu E, Francis GA (2005) The role of vesicular transport in ABCA1-dependent lipid efflux and its connection with NPC pathways. J Mol Med DOI
  9. 9.
    Zannis VI, Chroni A, Krieger M (2006) Role of ApoA-I, ABCA1, and SR-BI in the biogenesis of HDL. J Mol Med DOI
  10. 10.
    Neufeld EB, Stonik JA, Demosky SJ Jr, Knapper CL, Combs CA, Cooney A, Comly M, Dwyer N, Blanchette-Mackie J, Remaley AT, Santamarina-Fojo S, Brewer HB Jr (2004) The ABCA1 transporter modulates late endocytic trafficking: insights from the correction of the genetic defect in Tangier disease. J Biol Chem 279:15571–15578CrossRefPubMedGoogle Scholar
  11. 11.
    Choi HY, Karten B, Chan T, Vance JE, Greer WL, Heidenreich RA, Garver WS, Francis GA (2003) Impaired ABCA1-dependent lipid efflux and hypoalphalipoproteinemia in human Niemann–Pick type C disease. J Biol Chem 278:32569–32577CrossRefPubMedGoogle Scholar
  12. 12.
    Feng B, Tabas I (2002) ABCA1-mediated cholesterol efflux is defective in free cholesterol-loaded macrophages. Mechanism involves enhanced ABCA1 degradation in a process requiring full NPC1 activity. J Biol Chem 277:43271–43280CrossRefPubMedGoogle Scholar
  13. 13.
    Feng B, Zhang D, Kuriakose G, Devlin CM, Kockx M, Tabas I (2003) Niemann–Pick C heterozygosity confers resistance to lesional necrosis and macrophage apoptosis in murine atherosclerosis. Proc Natl Acad Sci U S A 100:10423–10428CrossRefPubMedGoogle Scholar
  14. 14.
    Navab M, Anantharamaiah GM, Reddy ST, Hama S, Hough G, Grijalva VR, Yu N, Ansell BJ, Datta G, Garber DW, Fogelman AM (2005) Apolipoprotein A-I mimetic peptides. Arterioscler Thromb Vasc Biol 25:1325–1331CrossRefPubMedGoogle Scholar
  15. 15.
    Remaley AT, Stonik JA, Demosky SJ, Neufeld EB, Bocharov AV, Vishnyakova TG, Eggerman TL, Patterson AP, Duverger NJ, Santamarina-Fojo S, Brewer HB Jr (2001) Apolipoprotein specificity for lipid efflux by the human ABCAI transporter. Biochem Biophys Res Commun 280:818–823CrossRefPubMedGoogle Scholar
  16. 16.
    Stonik JA, Remaley AT, Demosky SJ, Neufeld EB, Bocharov A, Brewer HB (2004) Serum amyloid A promotes ABCA1-dependent and ABCA1-independent lipid efflux from cells. Biochem Biophys Res Commun 321:936–941CrossRefPubMedGoogle Scholar
  17. 17.
    Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M (1996) Identification of scavenger receptor SR-BI as a high-density lipoprotein receptor. Science 271:518–520PubMedCrossRefGoogle Scholar
  18. 18.
    Krieger M (2001) Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. J Clin Invest 108:793–797CrossRefPubMedGoogle Scholar
  19. 19.
    Martinez LO, Jacquet S, Esteve JP, Rolland C, Cabezon E, Champagne E, Pineau T, Georgeaud V, Walker JE, Terce F, Collet X, Perret B, Barbaras R (2003) Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 421:75–79CrossRefPubMedGoogle Scholar
  20. 20.
    Chang SY, Park SG, Kim S, Kang CY (2002) Interaction of the C-terminal domain of p43 and the alpha subunit of ATP synthase. Its functional implication in endothelial cell proliferation. J Biol Chem 277:8388–8394CrossRefPubMedGoogle Scholar
  21. 21.
    Moser TL, Stack MS, Asplin I, Enghild JJ, Hojrup P, Everitt L, Hubchak S, Schnaper HW, Pizzo SV (1999) Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A 96:2811–2816CrossRefPubMedGoogle Scholar
  22. 22.
    Moser TL, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, Cheek DJ, Pizzo SV (2001) Endothelial cell surface F1–F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A 98:6656–6661CrossRefPubMedGoogle Scholar
  23. 23.
    Beisiegel U, Weber W, Havinga JR, Ihrke G, Hui DY, Wernette-Hammond ME, Turck CW, Innerarity TL, Mahley RW (1988) Apolipoprotein E-binding proteins isolated from dog and human liver. Arteriosclerosis 8:288–297PubMedGoogle Scholar
  24. 24.
    Mahley RW, Hui DY, Innerarity TL, Beisiegel U (1989) Chylomicron remnant metabolism. Role of hepatic lipoprotein receptors in mediating uptake. Arteriosclerosis 9:I14–I18PubMedGoogle Scholar
  25. 25.
    Kramer W, Girbig F, Corsiero D, Pfenninger A, Frick W, Rhein M, Wendler W, Lottspeich F, Hochleitner EO, Orso E, Schmitz G (2004) Aminopeptidase N (CD13) is a molecular target of the cholesterol absorption inhibitor Ezetimibe in the enterocyte brush border membrane. J Biol Chem 2809(2):1306–1320CrossRefGoogle Scholar
  26. 26.
    Garcia-Calvo M, Lisnock J, Bull HG, Hawes BE, Burnett DA, Braun MP, Crona JH, Davis HR Jr, Dean DC, Detmers PA, Graziano MP, Hughes M, Macintyre DE, Ogawa A, O’neill KA, Iyer SP, Shevell DE, Smith MM, Tang YS, Makarewicz AM, Ujjainwalla F, Altmann SW, Chapman KT, Thornberry NA (2005) The target of ezetimibe is Niemann–Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci U S A 102:8132–8137CrossRefPubMedGoogle Scholar
  27. 27.
    Hasty AH, Plummer MR, Weisgraber KH, Linton MF, Fazio S, Swift LL (2005) The recycling of apolipoprotein E in macrophages: influence of HDL and apolipoprotein A-I. J Lipid Res 46:1433–1439CrossRefPubMedGoogle Scholar
  28. 28.
    Heeren J, Grewal T, Laatsch A, Rottke D, Rinninger F, Enrich C, Beisiegel U (2003) Recycling of apoprotein E is associated with cholesterol efflux and high density lipoprotein internalization. J Biol Chem 278:14370–14378CrossRefPubMedGoogle Scholar
  29. 29.
    Rees D, Sloane T, Jessup W, Dean RT, Kritharides L (1999) Apolipoprotein A-I stimulates secretion of apolipoprotein E by foam cell macrophages. J Biol Chem 274:27925–27933CrossRefPubMedGoogle Scholar
  30. 30.
    van den EP, Garg S, Leon L, Brigl M, Leadbetter EA, Gumperz JE, Dascher CC, Cheng TY, Sacks FM, Illarionov PA, Besra GS, Kent SC, Moody DB, Brenner MB (2005) Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437:906–910CrossRefPubMedGoogle Scholar
  31. 31.
    Morita SY, Nakano M, Sakurai A, Deharu Y, Vertut-Doi A, Handa T (2005) Formation of ceramide-enriched domains in lipid particles enhances the binding of apolipoprotein E. FEBS Lett 579:1759–1764CrossRefPubMedGoogle Scholar
  32. 32.
    Hirsch-Reinshagen V, Zhou S, Burgess BL, Bernier L, McIsaac SA, Chan JY, Tansley GH, Cohn JS, Hayden MR, Wellington CL (2004) Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J Biol Chem 279:41197–41207CrossRefPubMedGoogle Scholar
  33. 33.
    Wahrle SE, Jiang H, Parsadanian M, Legleiter J, Han X, Fryer JD, Kowalewski T, Holtzman DM (2004) ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J Biol Chem 279:40987–40993CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Clinical Chemistry and Laboratory MedicineUniversity of RegensburgRegensburgGermany

Personalised recommendations