Journal of Molecular Medicine

, Volume 83, Issue 12, pp 944–954 | Cite as

The endocannabinoid system in the physiology and pathophysiology of the gastrointestinal tract

Review

Abstract

Numerous investigations have recently demonstrated the important roles of the endocannabinoid system in the gastrointestinal (GI) tract under physiological and pathophysiological conditions. In the GI tract, cannabinoid type 1 (CB1) receptors are present in neurons of the enteric nervous system and in sensory terminals of vagal and spinal neurons, while cannabinoid type 2 receptors are located in immune cells. Activation of CB1 receptors was shown to modulate several functions in the GI tract, including gastric secretion, gastric emptying and intestinal motility. Under pathophysiological conditions induced experimentally in rodents, the endocannabinoid system conveys protection to the GI tract (e.g. from inflammation and abnormally high gastric and enteric secretions). Such protective activities are largely in agreement with anecdotal reports from folk medicine on the use of Cannabis sativa extracts by subjects suffering from various GI disorders. Thus, the endocannabinoid system may serve as a potentially promising therapeutic target against different GI disorders, including frankly inflammatory bowel diseases (e.g. Crohn’s disease), functional bowel diseases (e.g. irritable bowel syndrome) and secretion- and motility-related disorders. As stimulation of this modulatory system by CB1 receptor agonists can lead to unwanted psychotropic side effects, an alternative and promising avenue for therapeutic applications resides in the treatment with CB1 receptor agonists that are unable to cross the blood–brain barrier, or with compounds that inhibit the degradation of endogenous ligands (endocannabinoids) of CB1 receptors, hence prolonging the activity of the endocannabinoid system.

Keywords

Endocannabinoids Gastrointestinal tract Sensory neurons Inflammation 

Abbreviations

Anandamide

arachidonoyl ethanolamide

2-AG

2-arachidonoyl glycerol

AT

anandamide transporter

CB1

cannabinoid type 1

CB2

cannabinoid type 2

FAAH

fatty acid amide hydrolase

GI

gastrointestinal

Δ9-THC

delta-9-tetrahydrocannabinol

TRPV1

vanilloid type 1

CCK

cholecystokinin

References

  1. 1.
    Grispoon L, Bakalar JB (1997) Marijuana, the forbidden medicine. Yale University Press, New Haven, Connecticut, USA, 184 ppGoogle Scholar
  2. 2.
    Coutts AA, Izzo AA (2004) The gastrointestinal pharmacology of cannabinoids: an update. Curr Opin Pharmacol 4:572–579PubMedGoogle Scholar
  3. 3.
    Pertwee RG (2001) Cannabinoids and the gastrointestinal tract. Gut 48:859–867CrossRefPubMedGoogle Scholar
  4. 4.
    Pertwee R (1993) The evidence for the existence of cannabinoid receptors. Gen Pharmacol 24:811–824PubMedGoogle Scholar
  5. 5.
    Pertwee RG (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 74:129–180CrossRefPubMedGoogle Scholar
  6. 6.
    Cota D, Marsicano G, Tschop M, Grubler Y, Flachskamm C, Schubert M, Auer D, Yassouridis A, Thone-Reineke C, Ortmann S, Tomassoni F, Cervino C, Nisoli E, Linthorst AC, Pasquali R, Lutz B, Stalla GK, Pagotto U (2003) The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 112:423–431CrossRefPubMedGoogle Scholar
  7. 7.
    Golech SA, McCarron RM, Chen Y, Bembry J, Lenz F, Mechoulam R, Shohami E, Spatz M (2004) Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors. Brain Res Mol Brain Res 132:87–92PubMedGoogle Scholar
  8. 8.
    Samson MT, Small-Howard A, Shimoda LM, Koblan-Huberson M, Stokes AJ, Turner H (2003) Differential roles of CB1 and CB2 cannabinoid receptors in mast cells. J Immunol 170:4953–4962PubMedGoogle Scholar
  9. 9.
    Izzo AA (2004) Cannabinoids and intestinal motility: welcome to CB2 receptors. Br J Pharmacol 142:1201–1202PubMedGoogle Scholar
  10. 10.
    Di Carlo G, Izzo AA (2003) Cannabinoids for gastrointestinal diseases: potential therapeutic applications. Expert Opin Investig Drugs 12:39–49PubMedGoogle Scholar
  11. 11.
    Pinto L, Capasso R, Di Carlo G, Izzo AA (2002) Endocannabinoids and the gut. Prostaglandins Leukot Essent Fatty Acids 66:333–341PubMedGoogle Scholar
  12. 12.
    Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884CrossRefPubMedGoogle Scholar
  13. 13.
    Di Marzo V, Bifulco M, De Petrocellis L (2004) The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov 3:771–784PubMedGoogle Scholar
  14. 14.
    Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202CrossRefPubMedGoogle Scholar
  15. 15.
    Mathison R, Ho W, Pittman QJ, Davison JS, Sharkey KA (2004) Effects of cannabinoid receptor-2 activation on accelerated gastrointestinal transit in lipopolysaccharide-treated rats. Br J Pharmacol 142:1247–1254PubMedGoogle Scholar
  16. 16.
    Howlett AC, Qualy JM, Khachatrian LL (1986) Involvement of Gi in the inhibition of adenylate cyclase by cannabimimetic drugs. Mol Pharmacol 29:307–313PubMedGoogle Scholar
  17. 17.
    Derkinderen P, Valjent E, Toutant M, Corvol JC, Enslen H, Ledent C, Trzaskos J, Caboche J, Girault JA (2003) Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J Neurosci 23:2371–2382PubMedGoogle Scholar
  18. 18.
    Gómez del Pulgar T, Velasco G, Guzman M (2000) The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt. Biochem J 347:369–373PubMedGoogle Scholar
  19. 19.
    Derkinderen P, Ledent C, Parmentier M, Girault JA (2001) Cannabinoids activate p38 mitogen-activated protein kinases through CB1 receptors in hippocampus. J Neurochem 77:957–960PubMedGoogle Scholar
  20. 20.
    Downer EJ, Fogarty MP, Campbell VA (2003) Tetrahydrocannabinol-induced neurotoxicity depends on CB1 receptor-mediated c-Jun N-terminal kinase activation in cultured cortical neurons. Br J Pharmacol 140:547–557PubMedGoogle Scholar
  21. 21.
    McAllister SD, Glass M (2002) CB(1) and CB(2) receptor-mediated signalling: a focus on endocannabinoids. Prostaglandins Leukot Essent Fatty Acids 66:161–171CrossRefPubMedGoogle Scholar
  22. 22.
    Mu J, Zhuang S, Kirby MT, Hampson RE, Deadwyler SA (1999) Cannabinoid receptors differentially modulate potassium A and D currents in hippocampal neurons in culture. J Pharmacol Exp Ther 291:893–902PubMedGoogle Scholar
  23. 23.
    Capasso R, Izzo AA, Fezza F, Pinto A, Capasso F, Mascolo N, Di Marzo V (2001) Inhibitory effect of palmitoylethanolamide on gastrointestinal motility in mice. Br J Pharmacol 134:945–950PubMedGoogle Scholar
  24. 24.
    Wang X, Miyares RL, Ahern GP (2005) Oleoylethanolamide excites vagal sensory neurons, induces visceral pain and reduces short-term food intake in mice via TRPV1. J Physiol 564:541–547PubMedGoogle Scholar
  25. 25.
    Pertwee RG, Ross RA (2002) Cannabinoid receptors and their ligands. Prostaglandins Leukot Essent Fatty Acids 66:101–121CrossRefPubMedGoogle Scholar
  26. 26.
    Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457CrossRefPubMedGoogle Scholar
  27. 27.
    McVey DC, Schmid PC, Schmid HH, Vigna SR (2003) Endocannabinoids induce ileitis in rats via the capsaicin receptor (VR1). J Pharmacol Exp Ther 304:713–722PubMedGoogle Scholar
  28. 28.
    Di Marzo V, De Petrocellis L, Fezza F, Ligresti A, Bisogno T (2002) Anandamide receptors. Prostaglandins Leukot Essent Fatty Acids 66:377–391CrossRefPubMedGoogle Scholar
  29. 29.
    Maingret F, Patel AJ, Lazdunski M, Honore E (2001) The endocannabinoid anandamide is a direct and selective blocker of the background K+ channel TASK-1. EMBO J 20:47–54CrossRefPubMedGoogle Scholar
  30. 30.
    Monory K, Tzavara ET, Lexime J, Ledent C, Parmentier M, Borsodi A, Hanoune J (2002) Novel, not adenylyl cyclase-coupled cannabinoid binding site in cerebellum of mice. Biochem Biophys Res Commun 292:231–235PubMedGoogle Scholar
  31. 31.
    Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066PubMedGoogle Scholar
  32. 32.
    Pertwee RG (1999) Pharmacology of cannabinoid receptor ligands. Curr Med Chem 6:635–664PubMedGoogle Scholar
  33. 33.
    Hillard CJ, Manna S, Greenberg MJ, DiCamelli R, Ross RA, Stevenson LA, Murphy V, Pertwee RG, Campbell WB (1999) Synthesis and characterization of potent and selective agonists of the neuronal cannabinoid receptor (CB1). J Pharmacol Exp Ther 289:1427–1433PubMedGoogle Scholar
  34. 34.
    Ibrahim MM, Deng H, Zvonok A, Cockayne DA, Kwan J, Mata HP, Vanderah TW, Lai J, Porreca F, Makriyannis A, Malan TP Jr (2003) Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci U S A 100:10529–10533PubMedGoogle Scholar
  35. 35.
    Ross RA, Brockie HC, Stevenson LA, Murphy VL, Templeton F, Makriyannis A, Pertwee RG (1999) Agonist-inverse agonist characterization at CB1 and CB2 cannabinoid receptors of L759633, L759656, and AM630. Br J Pharmacol 126:665–672PubMedGoogle Scholar
  36. 36.
    Hanus L, Breuer A, Tchilibon S, Shiloah S, Goldenberg D, Horowitz M, Pertwee RG, Ross RA, Mechoulam R, Fride E (1999) HU-308: a specific agonist for CB2, a peripheral cannabinoid receptor. Proc Natl Acad Sci U S A 96:14228–14233PubMedGoogle Scholar
  37. 37.
    Rinaldi-Carmona M, Barth F, Heaulme M, Alonso R, Shire D, Congy C, Soubrie P, Breliere JC, Le Fur G (1995) Biochemical and pharmacological characterisation of SR141716A, the first potent and selective brain cannabinoid receptor antagonist. Life Sci 56:1941–1947CrossRefPubMedGoogle Scholar
  38. 38.
    Rinaldi-Carmona M, Barth F, Congy C, Martinez S, Oustric D, Perio A, Poncelet M, Maruani J, Arnone M, Finance O, Soubrie P, Le Fur G (2004) SR147778 [5-(1-bromophenyl)-1-(2,4-dichlorophenyl)-4-ethyl-N-(1-piperidinyl)-1H-pyrazole-3-carboxamide], a new potent and selective antagonist of the CB1 cannabinoid receptor: biochemical and pharmacological characterization. J Pharmacol Exp Ther 310:905–914CrossRefPubMedGoogle Scholar
  39. 39.
    Gatley SJ, Gifford AN, Volkow ND, Lan R, Makriyannis A (1996) 123I-labeled AM251: a radioiodinated ligand which binds in vivo to mouse brain cannabinoid CB1 receptors. Eur J Pharmacol 307:331–338PubMedGoogle Scholar
  40. 40.
    Gatley SJ, Lan R, Volkow ND, Pappas N, King P, Wong CT, Gifford AN, Pyatt B, Dewey SL, Makriyannis A (1998) Imaging the brain marijuana receptor: development of a radioligand that binds to cannabinoid CB1 receptors in vivo. J Neurochem 70:417–423PubMedGoogle Scholar
  41. 41.
    Lange JH, Coolen HK, van Stuivenberg HH, Dijksman JA, Herremans AH, Ronken E, Keizer HG, Tipker K, McCreary AC, Veerman W, Wals HC, Stork B, Verveer PC, den Hartog AP, de Jong NM, Adolfs TJ, Hoogendoorn J, Kruse CG (2004) Synthesis, biological properties, and molecular modeling investigations of novel 3,4-diarylpyrazolines as potent and selective CB(1) cannabinoid receptor antagonists. J Med Chem 47:627–643CrossRefPubMedGoogle Scholar
  42. 42.
    Felder CC, Joyce KE, Briley EM, Glass M, Mackie KP, Fahey KJ, Cullinan GJ, Hunden DC, Johnson DW, Chaney MO, Koppel GA, Brownstein M (1998) LY320135, a novel cannabinoid CB1 receptor antagonist, unmasks coupling of the CB1 receptor to stimulation of cAMP accumulation. J Pharmacol Exp Ther 284:291–297PubMedGoogle Scholar
  43. 43.
    Rinaldi-Carmona M, Barth F, Millan J, Derocq JM, Casellas P, Congy C, Oustric D, Sarran M, Bouaboula M, Calandra B, Portier M, Shire D, Breliere JC, Le Fur GL (1998) SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor. J Pharmacol Exp Ther 284:644–650PubMedGoogle Scholar
  44. 44.
    Pertwee R, Griffin G, Fernando S, Li X, Hill A, Makriyannis A (1995) AM630, a competitive cannabinoid receptor antagonist. Life Sci 56:1949–1955CrossRefPubMedGoogle Scholar
  45. 45.
    Pertwee RG (2000) Cannabinoid receptor ligands: clinical and neuropharmacological considerations, relevant to future drug discovery and development. Expert Opin Investig Drugs 9:1553–1571PubMedGoogle Scholar
  46. 46.
    Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, Lichtman AH (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A 98:9371–9376PubMedGoogle Scholar
  47. 47.
    Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, Kathuria S, Piomelli D (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci U S A 99:10819–10824PubMedGoogle Scholar
  48. 48.
    Fowler CJ, Tiger G, Ligresti A, Lopez-Rodriguez ML, Di Marzo V (2004) Selective inhibition of anandamide cellular uptake versus enzymatic hydrolysis—a difficult issue to handle. Eur J Pharmacol 492:1–11PubMedGoogle Scholar
  49. 49.
    Fegley D, Gaetani S, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2004) Characterization of the fatty-acid amide hydrolase inhibitor URB597: effects on anandamide and oleoylethanolamide deactivation. J Pharmacol Exp Ther 313:352–358PubMedGoogle Scholar
  50. 50.
    Bisogno T, Melck D, De Petrocellis L, Bobrov MY, Gretskaya NM, Bezuglov VV, Sitachitta N, Gerwick WH, Di Marzo V (1998) Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase. Biochem Biophys Res Commun 248:515–522CrossRefPubMedGoogle Scholar
  51. 51.
    Mechoulam R, Ben Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90CrossRefPubMedGoogle Scholar
  52. 52.
    Izzo AA, Fezza F, Capasso R, Bisogno T, Pinto L, Iuvone T, Esposito G, Mascolo N, Di Marzo V, Capasso F (2001) Cannabinoid CB(1)-receptor mediated regulation of gastrointestinal motility in mice in a model of intestinal inflammation. Br J Pharmacol 134:563–570PubMedGoogle Scholar
  53. 53.
    Pinto L, Izzo AA, Cascio MG, Bisogno T, Hospodar-Scott K, Brown DR, Mascolo N, Di Marzo V, Capasso F (2002) Endocannabinoids as physiological regulators of colonic propulsion in mice. Gastroenterology 123:227–234PubMedGoogle Scholar
  54. 54.
    Katayama K, Ueda N, Kurahashi Y, Suzuki H, Yamamoto S, Kato I (1997) Distribution of anandamide amidohydrolase in rat tissues with special reference to small intestine. Biochim Biophys Acta 1347:212–218PubMedGoogle Scholar
  55. 55.
    Pertwee RG, Fernando SR, Griffin G, Abadji V, Makriyannis A (1995) Effect of phenylmethylsulphonyl fluoride on the potency of anandamide as an inhibitor of electrically evoked contractions in two isolated tissue preparations. Eur J Pharmacol 272:73–78PubMedGoogle Scholar
  56. 56.
    Coutts AA, Irving AJ, Mackie K, Pertwee RG, Anavi-Goffer S (2002) Localisation of cannabinoid CB(1) receptor immunoreactivity in the guinea pig and rat myenteric plexus. J Comp Neurol 448:410–422PubMedGoogle Scholar
  57. 57.
    Kulkarni-Narla A, Brown DR (2000) Localization of CB1-cannabinoid receptor immunoreactivity in the porcine enteric nervous system. Cell Tissue Res 302:73–80PubMedGoogle Scholar
  58. 58.
    Croci T, Manara L, Aureggi G, Guagnini F, Rinaldi-Carmona M, Maffrand JP, Le Fur G, Mukenge S, Ferla G (1998) In vitro functional evidence of neuronal cannabinoid CB1 receptors in human ileum. Br J Pharmacol 125:1393–1395PubMedGoogle Scholar
  59. 59.
    Casu MA, Porcella A, Ruiu S, Saba P, Marchese G, Carai MA, Reali R, Gessa GL, Pani L (2003) Differential distribution of functional cannabinoid CB1 receptors in the mouse gastroenteric tract. Eur J Pharmacol 459:97–105PubMedGoogle Scholar
  60. 60.
    Facci L, Dal Toso R, Romanello S, Buriani A, Skaper SD, Leon A (1995) Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc Natl Acad Sci U S A 92:3376–3380PubMedGoogle Scholar
  61. 61.
    Griffin G, Fernando SR, Ross RA, McKay NG, Ashford ML, Shire D, Huffman JW, Yu S, Lainton JA, Pertwee RG (1997) Evidence for the presence of CB2-like cannabinoid receptors on peripheral nerve terminals. Eur J Pharmacol 339:53–61CrossRefPubMedGoogle Scholar
  62. 62.
    Kulkarni-Narla A, Brown DR (2001) Opioid, cannabinoid and vanilloid receptor localization on porcine cultured myenteric neurons. Neurosci Lett 308:153–156PubMedGoogle Scholar
  63. 63.
    Storr M, Sibaev A, Marsicano G, Lutz B, Schusdziarra V, Timmermans JP, Allescher HD (2004) Cannabinoid receptor type 1 modulates excitatory and inhibitory neurotransmission in mouse colon. Am J Physiol Gastrointest Liver Physiol 286:G110–G117PubMedGoogle Scholar
  64. 64.
    Coutts AA, Pertwee RG (1998) Evidence that cannabinoid-induced inhibition of electrically evoked contractions of the myenteric plexus—longitudinal muscle preparation of guinea-pig small intestine can be modulated by Ca2+ and cAMP. Can J Physiol Pharmacol 76:340–346PubMedGoogle Scholar
  65. 65.
    Mang CF, Erbelding D, Kilbinger H (2001) Differential effects of anandamide on acetylcholine release in the guinea-pig ileum mediated via vanilloid and non-CB1 cannabinoid receptors. Br J Pharmacol 134:161–167PubMedGoogle Scholar
  66. 66.
    Capasso R, Matias I, Lutz B, Borrelli F, Capasso F, Marsicano G, Mascolo N, Petrosino S, Monory K, Valenti M, Di Marzo V, Izzo AA (2005). Fatty acid amide hydrolase controls mouse intestinal motility in vivo. Gastroenterology (in press)Google Scholar
  67. 67.
    Mascolo N, Izzo AA, Ligresti A, Costagliola A, Pinto L, Cascio MG, Maffia P, Cecio A, Capasso F, Di Marzo V (2002) The endocannabinoid system and the molecular basis of paralytic ileus in mice. FASEB J 16:1973–1975PubMedGoogle Scholar
  68. 68.
    Shook JE, Burks TF (1989) Psychoactive cannabinoids reduce gastrointestinal propulsion and motility in rodents. J Pharmacol Exp Ther 249:444–449PubMedGoogle Scholar
  69. 69.
    McCallum RW, Soykan I, Sridhar KR, Ricci DA, Lange RC, Plankey MW (1999) Delta-9-tetrahydrocannabinol delays the gastric emptying of solid food in humans: a double-blind, randomized study. Aliment Pharmacol Ther 13:77–80CrossRefGoogle Scholar
  70. 70.
    Shook JE, Dewey WL, Burks TF (1986) The central and peripheral effects of delta-9-tetrahydrocannabinol on gastrointestinal transit in mice. NIDA Res Monogr 67:222–227PubMedGoogle Scholar
  71. 71.
    Landi M, Croci T, Rinaldi-Carmona M, Maffrand JP, Le Fur G, Manara L (2002) Modulation of gastric emptying and gastrointestinal transit in rats through intestinal cannabinoid CB(1) receptors. Eur J Pharmacol 450:77–83PubMedGoogle Scholar
  72. 72.
    Izzo AA, Mascolo N, Capasso R, Germano MP, De Pasquale R, Capasso F (1999) Inhibitory effect of cannabinoid agonists on gastric emptying in the rat. Naunyn-Schmiedeberg’s Arch Pharmacol 360:221–223CrossRefGoogle Scholar
  73. 73.
    Krowicki ZK, Moerschbaecher JM, Winsauer PJ, Digavalli SV, Hornby PJ (1999) Delta9-tetrahydrocannabinol inhibits gastric motility in the rat through cannabinoid CB1 receptors. Eur J Pharmacol 371:187–196PubMedGoogle Scholar
  74. 74.
    Rivas V, Garcia R (1980) Inhibition of histamine-stimulated gastric acid secretion by delta 9-tetrahydrocannabinol in rat isolated stomach. Eur J Pharmacol 65:317–318PubMedGoogle Scholar
  75. 75.
    Coruzzi G, Adami M, Coppelli G, Frati P, Soldani G (1999) Inhibitory effect of the cannabinoid receptor agonist WIN55,212-2 on pentagastrin-induced gastric acid secretion in the anaesthetized rat. Naunyn-Schmiedeberg’s Arch Pharmacol 360:715–718CrossRefGoogle Scholar
  76. 76.
    Adami M, Frati P, Bertini S, Kulkarni-Narla A, Brown DR, De Caro G, Coruzzi G, Soldani G (2002) Gastric antisecretory role and immunohistochemical localization of cannabinoid receptors in the rat stomach. Br J Pharmacol 135:1598–1606PubMedGoogle Scholar
  77. 77.
    Cota D, Marsicano G, Lutz B, Vicennati V, Stalla GK, Pasquali R, Pagotto U (2003) Endogenous cannabinoid system as a modulator of food intake. Int J Obes Relat Metab Disord 27:289–301PubMedGoogle Scholar
  78. 78.
    Gomez R, Navarro M, Ferrer B, Trigo JM, Bilbao A, Del Arco I, Cippitelli A, Nava F, Piomelli D, Rodríguez de Fonseca F (2002) A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci 22:9612–9617PubMedGoogle Scholar
  79. 79.
    Tramer MR, Carroll D, Campbell FA, Reynolds DJ, Moore RA, McQuay HJ (2001) Cannabinoids for control of chemotherapy induced nausea and vomiting: quantitative systematic review. BMJ 323:16–21PubMedGoogle Scholar
  80. 80.
    Porter AC, Felder CC (2001) The endocannabinoid nervous system: unique opportunities for therapeutic intervention. Pharmacol Ther 90:45–60PubMedGoogle Scholar
  81. 81.
    Van Sickle MD, Oland LD, Ho W, Hillard CJ, Mackie K, Davison JS, Sharkey KA (2001) Cannabinoids inhibit emesis through CB1 receptors in the brainstem of the ferret. Gastroenterology 121:767–774PubMedGoogle Scholar
  82. 82.
    Darmani NA, Johnson JC (2004) Central and peripheral mechanisms contribute to the antiemetic actions of delta-9-tetrahydrocannabinol against 5-hydroxytryptophan-induced emesis. Eur J Pharmacol 488:201–212CrossRefPubMedGoogle Scholar
  83. 83.
    Van Sickle MD, Oland LD, Mackie K, Davison JS, Sharkey KA (2003) Delta9-tetrahydrocannabinol selectively acts on CB1 receptors in specific regions of dorsal vagal complex to inhibit emesis in ferrets. Am J Physiol Gastrointest Liver Physiol 285:G566–G576PubMedGoogle Scholar
  84. 84.
    Germano MP, D’Angelo V, Mondello MR, Pergolizzi S, Capasso F, Capasso R, Izzo AA, Mascolo N, De Pasquale R (2001) Cannabinoid CB1-mediated inhibition of stress-induced gastric ulcers in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 363:241–244CrossRefGoogle Scholar
  85. 85.
    Holloway RH (2001) Systemic pharmacomodulation of transient lower esophageal sphincter relaxations. Am J Med 111(Suppl 8A):178S–185SPubMedGoogle Scholar
  86. 86.
    Partosoedarso ER, Abrahams TP, Scullion RT, Moerschbaecher JM, Hornby PJ (2003) Cannabinoid 1 receptor in the dorsal vagal complex modulates lower oesophageal sphincter relaxation in ferrets. J Physiol 550:149–158PubMedGoogle Scholar
  87. 87.
    Lehmann A, Blackshaw LA, Branden L, Carlsson A, Jensen J, Nygren E, Smid SD (2002) Cannabinoid receptor agonism inhibits transient lower esophageal sphincter relaxations and reflux in dogs. Gastroenterology 123:1129–1134PubMedGoogle Scholar
  88. 88.
    Izzo AA, Capasso R, Pinto L, Di Carlo G, Mascolo N, Capasso F (2001) Effect of vanilloid drugs on gastrointestinal transit in mice. Br J Pharmacol 132:1411–1416PubMedGoogle Scholar
  89. 89.
    Tyler K, Hillard CJ, Greenwood-Van Meerveld B (2000) Inhibition of small intestinal secretion by cannabinoids is CB1 receptor-mediated in rats. Eur J Pharmacol 409:207–211PubMedGoogle Scholar
  90. 90.
    Green BT, Brown DR (2002) Active bicarbonate-dependent secretion evoked by 5-hydroxytryptamine in porcine ileal mucosa is mediated by opioid-sensitive enteric neurons. Eur J Pharmacol 451:185–190PubMedGoogle Scholar
  91. 91.
    Nalin DR, Levine MM, Rhead J, Bergquist E, Rennels M, Hughes T, O’Donnel S, Hornick RB (1978) Cannabis, hypochlorhydria, and cholera. Lancet 2:859–862PubMedGoogle Scholar
  92. 92.
    Izzo AA, Capasso F, Costagliola A, Bisogno T, Marsicano G, Ligresti A, Matias I, Capasso R, Pinto L, Borrelli F, Cecio A, Lutz B, Mascolo N, Di Marzo V (2003) An endogenous cannabinoid tone attenuates cholera toxin-induced fluid accumulation in mice. Gastroenterology 125:765–774PubMedGoogle Scholar
  93. 93.
    Russo EB (2004) Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro-Endocrinol Lett 25:31–39PubMedGoogle Scholar
  94. 94.
    Croci T, Landi M, Galzin AM, Marini P (2003) Role of cannabinoid CB1 receptors and tumor necrosis factor-alpha in the gut and systemic anti-inflammatory activity of SR 141716 (rimonabant) in rodents. Br J Pharmacol 140:115–122PubMedGoogle Scholar
  95. 95.
    Massa F, Marsicano G, Hermann H, Cannich A, Monory K, Cravatt BF, Ferri GL, Sibaev A, Storr M, Lutz B (2004) The endogenous cannabinoid system protects against colonic inflammation. J Clin Invest 113:1202–1209PubMedGoogle Scholar
  96. 96.
    Hall W, Christie M, Currow D (2005) Cannabinoids and cancer: causation, remediation, and palliation. Lancet Oncol 6:35–42PubMedGoogle Scholar
  97. 97.
    Ligresti A, Bisogno T, Matias I, De Petrocellis L, Cascio MG, Cosenza V, D’argenio G, Scaglione G, Bifulco M, Sorrentini I, Di Marzo V (2003) Possible endocannabinoid control of colorectal cancer growth. Gastroenterology 125:677–687CrossRefPubMedGoogle Scholar
  98. 98.
    Holzer P (2001) Gastrointestinal afferents as targets of novel drugs for the treatment of functional bowel disorders and visceral pain. Eur J Pharmacol 429:177–193PubMedGoogle Scholar
  99. 99.
    Corchero J, Manzanares J, Fuentes JA (2004) Cannabinoid/opioid crosstalk in the central nervous system. Crit Rev Neurobiol 16:159–172PubMedGoogle Scholar
  100. 100.
    Coutts AA, Pertwee RG (1997) Inhibition by cannabinoid receptor agonists of acetylcholine release from the guinea-pig myenteric plexus. Br J Pharmacol 121:1557–1566PubMedGoogle Scholar
  101. 101.
    Strader AD, Woods SC (2005) Gastrointestinal hormones and food intake. Gastroenterology 128:175–191PubMedGoogle Scholar
  102. 102.
    Burdyga G, Lal S, Varro A, Dimaline R, Thompson DG, Dockray GJ (2004) Expression of cannabinoid CB1 receptors by vagal afferent neurons is inhibited by cholecystokinin. J Neurosci 24:2708–2715PubMedGoogle Scholar
  103. 103.
    Ralevic V (2003) Cannabinoid modulation of peripheral autonomic and sensory neurotransmission. Eur J Pharmacol 472:1–21PubMedGoogle Scholar
  104. 104.
    Ahluwalia J, Urban L, Capogna M, Bevan S, Nagy I (2000) Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience 100:685–688PubMedGoogle Scholar
  105. 105.
    Ahluwalia J, Urban L, Bevan S, Nagy I (2003) Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. Eur J Neurosci 17:2611–2618PubMedGoogle Scholar
  106. 106.
    Drosmann DA, Corazzieri E, Talley NJ, Thompsom WG, Whitehead WE (2000) The functional gastrointestinal disorders. Diagnosis, pathophysiology and treatment: a multinational consensus. University of North Carolina, Chapel Hill, NC, USA, 370 ppGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Physiological ChemistryJohannes Gutenberg-University MainzMainzGermany
  2. 2.Department of Internal Medicine IILudwig-Maximilians-University MunichMunichGermany

Personalised recommendations