Journal of Molecular Medicine

, Volume 83, Issue 7, pp 521–525 | Cite as

Hemojuvelin: a supposed role in iron metabolism one year after its discovery

  • Peter CelecEmail author


The discovery of hemojuvelin and its association with juvenile hemochromatosis are important not only for the diagnostics of this rare severe disease but also for the understanding of the complex mechanism of iron metabolism regulation. Currently, the physiological role of hemojuvelin is obscure. Recent experimental and clinical studies indicate that hemojuvelin will probably be a regulator of hepcidin, similar to HFE and transferrin receptor 2. However, in contrast to transferrin receptor 2, which is relevant in the hepcidin response to changes in transferrin saturation, HFE and especially hemojuvelin seem to be involved in the inflammation-induced hepcidin expression. Hepcidin, generally accepted as a hormone targeting enterocytes and macrophages, decreases iron absorption from the intestinal lumen and iron release from phagocytes. This mechanism explains the central role of hepcidin and, indirectly, its regulator, hemojuvelin, in the pathogenesis of hemochromatosis but also in anemia of chronic disease. Further basic and clinical research is needed to uncover the details of hemojuvelin pathophysiology required for potential pharmacological interventions.


Hemojuvelin Hepcidin HFE Juvenile hemochromatosis Iron metabolism 



The author would like to thank Assoc. Prof. Ĺubomír Tomáška, Ph.D., for the stimulus to write this article and for his critical reading of the manuscript. The anonymous reviewers and their comments should be acknowledged. The author is supported by grants 116/2004 and 117/2004 from the Comenius University and by the Agency for Science and Technology grant APVT-20-003-104.


  1. 1.
    De Gobbi M, Roetto A, Piperno A, Mariani R, Alberti F, Papanikolaou G, Politou M, Lockitch G, Girelli D, Fargion S, Cox TM, Gasparini P, Cazzola M, Camaschella C (2002) Natural history of juvenile haemochromatosis. Br J Haematol 117:973–979PubMedGoogle Scholar
  2. 2.
    Pietrangelo A (2004) Non-HFE hemochromatosis. Hepatology 39:21–29PubMedGoogle Scholar
  3. 3.
    Roetto A, Totaro A, Cazzola M, Cicilano M, Bosio S, D’Ascola G, Carella M, Zelante L, Kelly AL, Cox TM, Gasparini P, Camaschella C (1999) Juvenile hemochromatosis locus maps to chromosome 1q. Am J Hum Genet 64:1388–1393PubMedGoogle Scholar
  4. 4.
    Rivard SR, Lanzara C, Grimard D, Carella M, Simard H, Ficarella R, Simard R, D’Adamo AP, Ferec C, Camaschella C, Mura C, Roetto A, De Braekeleer M, Bechner L, Gasparini P (2003) Juvenile hemochromatosis locus maps to chromosome 1q in a French Canadian population. Eur J Hum Genet 11:585–589PubMedGoogle Scholar
  5. 5.
    Roetto A, Alberti F, Daraio F, Cali A, Cazzola M, Totaro A, Gasparini P, Camaschella C (2000) Exclusion of ZIRTL as candidate gene of juvenile hemochromatosis and refinement of the critical interval on 1q21. Blood Cells Mol Dis 26:205–210PubMedGoogle Scholar
  6. 6.
    Papanikolaou G, Samuels ME, Ludwig EH, MacDonald ML, Franchini PL, Dube MP, Andres L, MacFarlane J, Sakellaropoulos N, Politou M, Nemeth E, Thompson J, Risler JK, Zaborowska C, Babakaiff R, Radomski CC, Pape TD, Davidas O, Christakis J, Brissot P, Lockitch G, Ganz T, Hayden MR, Goldberg YP (2004) Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet 36:77–82PubMedGoogle Scholar
  7. 7.
    Brissot P, Troadec MB, Loreal O (2004) The clinical relevance of new insights in iron transport and metabolism. Curr Hematol Rep 3:107–115PubMedGoogle Scholar
  8. 8.
    Griffiths W, Cox T (2000) Haemochromatosis: novel gene discovery and the molecular pathophysiology of iron metabolism. Hum Mol Genet 9:2377–2382PubMedGoogle Scholar
  9. 9.
    Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, Dormishian F, Domingo R Jr, Ellis MC, Fullan A, Hinton LM, Jones NL, Kimmel BE, Kronmal GS, Lauer P, Lee VK, Loeb DB, Mapa FA, McClelland E, Meyer NC, Mintier GA, Moeller N, Moore T, Morikang E, Wolff RK et al (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13:399–408CrossRefPubMedGoogle Scholar
  10. 10.
    Beutler E, Felitti VJ, Koziol JA, Ho NJ, Gelbart T (2002) Penetrance of 845G→A (C282Y) HFE hereditary haemochromatosis mutation in the USA. Lancet 359:211–218PubMedGoogle Scholar
  11. 11.
    Zhou XY, Tomatsu S, Fleming RE, Parkkila S, Waheed A, Jiang J, Fei Y, Brunt EM, Ruddy DA, Prass CE, Schatzman RC, O’Neill R, Britton RS, Bacon BR, Sly WS (1998) HFE gene knockout produces mouse model of hereditary hemochromatosis. Proc Natl Acad Sci U S A 95:2492–2497PubMedGoogle Scholar
  12. 12.
    Krause A, Neitz S, Magert HJ, Schulz A, Forssmann WG, Schulz-Knappe P, Adermann K (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480:147–150PubMedGoogle Scholar
  13. 13.
    Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276:7806–7810PubMedGoogle Scholar
  14. 14.
    Nicolas G, Viatte L, Bennoun M, Beaumont C, Kahn A, Vaulont S (2002) Hepcidin, a new iron regulatory peptide. Blood Cells Mol Dis 29:327–335PubMedGoogle Scholar
  15. 15.
    Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093PubMedGoogle Scholar
  16. 16.
    Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T (2003) Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 101:2461–2463PubMedGoogle Scholar
  17. 17.
    Delatycki MB, Allen KJ, Gow P, MacFarlane J, Radomski C, Thompson J, Hayden MR, Goldberg YP, Samuels ME (2004) A homozygous HAMP mutation in a multiply consanguineous family with pseudo-dominant juvenile hemochromatosis. Clin Genet 65:378–383PubMedGoogle Scholar
  18. 18.
    Matthes T, Aguilar-Martinez P, Pizzi-Bosman L, Darbellay R, Rubbia-Brandt L, Giostra E, Michel M, Ganz T, Beris P (2004) Severe hemochromatosis in a Portuguese family associated with a new mutation in the 5′-UTR of the HAMP gene. Blood 104:2181–2183PubMedGoogle Scholar
  19. 19.
    Rodriguez Martinez A, Niemela O, Parkkila S (2004) Hepatic and extrahepatic expression of the new iron regulatory protein hemojuvelin. Haematologica 89:1441–1445PubMedGoogle Scholar
  20. 20.
    Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C (2005) Hepcidin is decreased in TFR2 hemochromatosis. Blood 105:1803–1806PubMedGoogle Scholar
  21. 21.
    Robson KJ, Merryweather-Clarke AT, Cadet E, Viprakasit V, Zaahl MG, Pointon JJ, Weatherall DJ, Rochette J (2004) Recent advances in understanding haemochromatosis: a transition state. J Med Genet 41:721–730PubMedGoogle Scholar
  22. 22.
    Camaschella C, Roetto A, De Gobbi M (2002) Juvenile hemochromatosis. Semin Hematol 39:242–248PubMedGoogle Scholar
  23. 23.
    Lee PL, Barton JC, Brandhagen D, Beutler E (2004) Hemojuvelin (HJV) mutations in persons of European, African-American and Asian ancestry with adult onset haemochromatosis. Br J Haematol 127:224–229PubMedGoogle Scholar
  24. 24.
    Biasiotto G, Roetto A, Daraio F, Polotti A, Gerardi GM, Girelli D, Cremonesi L, Arosio P, Camaschella C (2004) Identification of new mutations of hepcidin and hemojuvelin in patients with HFE C282Y allele. Blood Cells Mol Dis 33:338–343PubMedGoogle Scholar
  25. 25.
    Lanzara C, Roetto A, Daraio F, Rivard S, Ficarella R, Simard H, Cox TM, Cazzola M, Piperno A, Gimenez-Roqueplo AP, Grammatico P, Volinia S, Gasparini P, Camaschella C (2004) Spectrum of hemojuvelin gene mutations in 1q-linked juvenile hemochromatosis. Blood 103:4317–4321PubMedGoogle Scholar
  26. 26.
    Lee PL, Beutler E, Rao SV, Barton JC (2004) Genetic abnormalities and juvenile hemochromatosis: mutations of the HJV gene encoding hemojuvelin. Blood 103:4669–4671PubMedGoogle Scholar
  27. 27.
    Barton JC, Rivers CA, Niyongere S, Bohannon SB, Acton RT (2004) Allele frequencies of hemojuvelin gene (HJV) I222N and G320V missense mutations in white and African American subjects from the general Alabama population. BMC Med Genet 5:29PubMedGoogle Scholar
  28. 28.
    Huang FW, Rubio-Aliaga I, Kushner JP, Andrews NC, Fleming MD (2004) Identification of a novel mutation (C321X) in HJV. Blood 104:2176–2177PubMedGoogle Scholar
  29. 29.
    Roetto A, Papanikolaou G, Politou M, Alberti F, Girelli D, Christakis J, Loukopoulos D, Camaschella C (2003) Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 33:21–22PubMedGoogle Scholar
  30. 30.
    de Sousa M, Porto G (1998) The immunological system in hemochromatosis. J Hepatol 28(Suppl 1):1–7CrossRefGoogle Scholar
  31. 31.
    Robb A, Wessling-Resnick M (2004) Regulation of transferrin receptor 2 protein levels by transferrin. Blood 104:4294–4299PubMedGoogle Scholar
  32. 32.
    Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C (2005) Hepcidin is decreased in TFR2-hemochromatosis. Blood 105:1803–1806PubMedGoogle Scholar
  33. 33.
    Kawabata H, Fleming RE, Gui D, Moon SY, Saitoh T, O’Kelly J, Umehara Y, Wano Y, Said JW, Koeffler HP (2005) Expression of hepcidin is down-regulated in TfR2 mutant mice manifesting a phenotype of hereditary hemochromatosis. Blood 105:376–381PubMedGoogle Scholar
  34. 34.
    Nisbet-Brown E (2004) Hemojuvelin and hepcidin: the keys to JH? Blood 104:1918–1919Google Scholar
  35. 35.
    Ajioka R, Kushner J (2004) Another link in the chain. Blood 103:2439–2440Google Scholar
  36. 36.
    Roy CN, Custodio AO, de Graaf J, Schneider S, Akpan I, Montross LK, Sanchez M, Gaudino A, Hentze MW, Andrews NC, Muckenthaler MU (2004) An Hfe-dependent pathway mediates hyposideremia in response to lipopolysaccharide-induced inflammation in mice. Nat Genet 36:481–485PubMedGoogle Scholar
  37. 37.
    Ludwiczek S, Aigner E, Theurl I, Weiss G (2003) Cytokine-mediated regulation of iron transport in human monocytic cells. Blood 101:4148–4154PubMedGoogle Scholar
  38. 38.
    Nicolas G, Viatte L, Lou DQ, Bennoun M, Beaumont C, Kahn A, Andrews NC, Vaulont S (2003) Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nat Genet 34:97–101PubMedGoogle Scholar
  39. 39.
    Krijt J, Vokurka M, Chang KT, Necas E (2004) Expression of Rgmc, the murine ortholog of hemojuvelin gene, is modulated by development and inflammation, but not by iron status or erythropoietin. Blood 104:4308–4310PubMedGoogle Scholar
  40. 40.
    Gasparini P, Camaschella C (2004) Hereditary hemochromatosis: is the gene race over? Eur J Hum Genet 12:341–342PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.BiomeD Research and Publishing GroupBratislavaSlovakia
  2. 2.Institute of PathophysiologyComenius UniversityBratislavaSlovakia
  3. 3.Department of Molecular BiologyComenius UniversityBratislavaSlovakia
  4. 4.BratislavaSlovakia

Personalised recommendations