Journal of Molecular Medicine

, Volume 84, Issue 7, pp 561–572 | Cite as

The contribution of individual and pairwise combinations of SNPs in the APOA1 and APOC3 genes to interindividual HDL-C variability

  • C. M. Brown
  • T. J. Rea
  • S. C. Hamon
  • J. E. Hixson
  • E. Boerwinkle
  • A. G. Clark
  • C. F. SingEmail author
Original Article


Apolipoproteins (apo) A-I and C-III are components of high-density lipoprotein-cholesterol (HDL-C), a quantitative trait negatively correlated with risk of cardiovascular disease (CVD). We analyzed the contribution of individual and pairwise combinations of single nucleotide polymorphisms (SNPs) in the APOA1/APOC3 genes to HDL-C variability to evaluate (1) consistency of published single-SNP studies with our single-SNP analyses; (2) consistency of single-SNP and two-SNP phenotype–genotype relationships across race-, gender-, and geographical location-dependent contexts; and (3) the contribution of single SNPs and pairs of SNPs to variability beyond that explained by plasma apo A-I concentration. We analyzed 45 SNPs in 3,831 young African–American (N=1,858) and European–American (N=1,973) females and males ascertained by the Coronary Artery Risk Development in Young Adults (CARDIA) study. We found three SNPs that significantly impact HDL-C variability in both the literature and the CARDIA sample. Single-SNP analyses identified only one of five significant HDL-C SNP genotype relationships in the CARDIA study that was consistent across all race-, gender-, and geographical location-dependent contexts. The other four were consistent across geographical locations for a particular race–gender context. The portion of total phenotypic variance explained by single-SNP genotypes and genotypes defined by pairs of SNPs was less than 3%, an amount that is miniscule compared to the contribution explained by variability in plasma apo A-I concentration. Our findings illustrate the impact of context-dependence on SNP selection for prediction of CVD risk factor variability.


APOA1 gene APOC3 gene High-density lipoprotein-cholesterol Cardiovascular disease 



This work was supported by NIH grants HL072810, HL072905, HL039107, GM065509, HC095095, HC048047, HC048048, HC048049, HC048050, HC045134, and HC05187. The authors would like to thank Lynn Illeck, Paul Kopec, Deborah Theodore, and Kenneth G. Weiss for their technical support and research assistance.

Supplementary material


  1. 1.
    National Heart, Lung, and Blood Institute (2002) Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation and treatment of high blood cholesterol in adults (adult treatment panel III). National Institutes of Health, Bethesda, MD. Circulation 106(25):3143–3421Google Scholar
  2. 2.
    Asztalos BF, HDL Atherosclerosis Treatment Study (2004) High-density lipoprotein metabolism and progression of atherosclerosis: insights from the HDL Atherosclerosis Treatment Study. Curr Opin Cardiol 19:385–391PubMedCrossRefGoogle Scholar
  3. 3.
    Tall AR, Small DM (1978) Plasma high-density lipoproteins. N Engl J Med 299:1232–1236PubMedCrossRefGoogle Scholar
  4. 4.
    Lund-Katz S, Liu L, Thuahnai ST, Phillips MC (2003) High density lipoprotein structure. Front Biosci 8:d1044–d1054PubMedCrossRefGoogle Scholar
  5. 5.
    Wang CS, McConathy WJ, Kloer HU, Alaupovic P (1985) Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest 75:384–390PubMedCrossRefGoogle Scholar
  6. 6.
    Xu S, Laccotripe M, Huang X, Rigotti A, Zannis VI, Krieger M (1997) Apolipoproteins of HDL can directly mediate binding to the scavenger receptor SR-BI, an HDL receptor that mediates selective lipid uptake. J Lipid Res 38:1289–1298PubMedGoogle Scholar
  7. 7.
    Groenendijk M, Cantor RM, de Bruin TW, Dallinga-Thie GM (2001) The apoAI-CIII-AIV-AV gene cluster. Atherosclerosis 157:1–11PubMedCrossRefGoogle Scholar
  8. 8.
    Sing CF, Boerwinkle E (1987) Genetic architecture of inter-individual variability in apolipoprotein, lipoprotein and lipid phenotypes. In: Bock G, Collins GM (eds) Molecular approaches to human polygenic disease (Ciba Foundation Symposia 130). Wiley, Chichester, pp 99–127CrossRefGoogle Scholar
  9. 9.
    Miller M, Zhan M (2004) Genetic determinants of low high-density lipoprotein cholesterol. Curr Opin Cardiol 19:380–384PubMedCrossRefGoogle Scholar
  10. 10.
    Pallaud C, Gueguen R, Sass C, Grow M, Cheng S, Siest G, Visvikis S (2001) Genetic influences on lipid metabolism trait variability within the Stanislas Cohort. J Lipid Res 42:1879–1890PubMedGoogle Scholar
  11. 11.
    Kamboh MI, Bunker CH, Aston CE, Nestlerode CS, McAllister AE, Ukoli FA (1999) Genetic association of five apolipoprotein polymorphisms with serum lipoprotein-lipid levels in African blacks. Genet Epidemiol 16:205–222PubMedCrossRefGoogle Scholar
  12. 12.
    Larson IA, Ordovas JM, Barnard JR, Hoffmann MM, Feussner G, Lamon-Fava S, Schaefer EJ (2002) Effects of apolipoprotein A-I genetic variations on plasma apolipoprotein, serum lipoprotein and glucose levels. Clin Genet 61:176–184PubMedCrossRefGoogle Scholar
  13. 13.
    Waterworth DM, Talmud PJ, Bujac SR, Fisher RM, Miller GJ, Humphries SE (2000) Contribution of apolipoprotein C-III gene variants to determination of triglyceride levels and interaction with smoking in middle-aged men. Arterioscler Thromb Vasc Biol 20:2663–2669PubMedGoogle Scholar
  14. 14.
    Pembrey M (2004) Genetic epidemiology: some special considerations of birth cohorts. Paediatr Perinat Epidemiol 18:3–7PubMedCrossRefGoogle Scholar
  15. 15.
    Friedman GD, Cutter GR, Donahue RP, Hughes GH, Hulley SB, Jacobs DR Jr, Liu K, Savage PJ (1988) CARDIA: study design, recruitment, and some characteristics of the examined subjects. J Clin Epidemiol 41:1105–1116PubMedCrossRefGoogle Scholar
  16. 16.
    Warnick GR (1986) Enzymatic methods for quantification of lipoprotein lipids. Methods Enzymol 129:101–123PubMedCrossRefGoogle Scholar
  17. 17.
    Albers JJ, Adolphson JL (1988) Comparison of commercial kits for apoprotein A-I and apoprotein B with standardized apoprotein A-I and B radioimmunoassays performed at the Northwest Lipid Research Center. J Lipid Res 29:102–108PubMedGoogle Scholar
  18. 18.
    Fullerton SM, Buchanon AV, Sonpar VA, Taylor SL, Smith JD, Carlson CS, Salomaa V, Stengård JH, Boerwinkle E, Clark AG, Nickerson DA, Weiss KM (2004) The effects of scale: variation in the APOA1/C3/A4/A5 gene cluster. Hum Genet 115:36–56PubMedCrossRefGoogle Scholar
  19. 19.
    Efron B, Tibshirani R (2002) Empirical bayes methods and false discovery rates for microarrays. Genet Epidemiol 23:70–86PubMedCrossRefGoogle Scholar
  20. 20.
    Nelson MR, Kardia SL, Ferrell RE, Sing CF (2001) A combinatorial partitioning method to identify multilocus genotypic partitions that predict quantitative trait variation. Genome Res 11:458–470PubMedCrossRefGoogle Scholar
  21. 21.
    Rohlf FJ, Sokal RR (1994) Biometry. W.H. Freeman, New YorkGoogle Scholar
  22. 22.
    Hamon SC, Stengård JH, Clark AG, Salomaa V, Boerwinkle E, Sing CF (2004) Evidence for non-additive influence of single nucleotide polymorphisms within the apolipoprotein E gene. Ann Hum Genet 68:521–535PubMedCrossRefGoogle Scholar
  23. 23.
    Searle SR (1971) Linear models. Wiley, New YorkGoogle Scholar
  24. 24.
    Weir BS (1996) Genetic data analysis 2: methods for discrete population genetic data. Sinauer, MassachusettsGoogle Scholar
  25. 25.
    Kamboh MI, Aston CE, Nestlerode CM, McAllister AE, Hamman RF (1996) Haplotype analysis of two APOA1/MspI polymorphisms in relation to plasma levels of apo A-I and HDL-cholesterol. Atherosclerosis 127:255–262PubMedCrossRefGoogle Scholar
  26. 26.
    Shioji K, Mannami T, Kokubo Y, Goto Y, Nonogi H, Iwai N (2004) An association analysis between ApoA1 polymorphisms and the high-density lipoprotein (HDL) cholesterol level and myocardial infarction (MI) in Japanese. J Hum Genet 49:433–439PubMedGoogle Scholar
  27. 27.
    Peacock RE, Temple A, Gudnason V, Rosseneu M, Humphries SE (1997) Variation at the lipoprotein lipase and apolipoprotein AI-CIII gene loci are associated with fasting lipid and lipoprotein traits in a population sample from Iceland: interaction between genotype, gender, and smoking status. Genet Epidemiol 14:265–282PubMedCrossRefGoogle Scholar
  28. 28.
    Dallongeville J, Meirhaeghe A, Cottel D, Fruchart JC, Amouyel P, Helbecque N (2000) Gender related association between genetic variations of APOC-III gene and lipid and lipoprotein variables in northern France. Atherosclerosis 150:149–157PubMedCrossRefGoogle Scholar
  29. 29.
    Miller M, Rhyne J, Khatta M, Parekh H, Zeller K (2001) Prevalence of the APOC3 promoter polymorphisms T-455C and C-482T in Asian–Indians. Am J Cardiol 87:220–221PubMedCrossRefGoogle Scholar
  30. 30.
    Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer, MassachusettsGoogle Scholar
  31. 31.
    Davey Smith G, Egger M (1998) Meta-analysis. Unresolved issues and future developments. BMJ 316:221–225PubMedGoogle Scholar
  32. 32.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300Google Scholar
  33. 33.
    Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  34. 34.
    Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, MassachusettsGoogle Scholar
  35. 35.
    Hamon SC, Kardia SLR, Boerwinkle E, Liu K, Klos KLE, Clark AG, Sing CF (2006) Replicate evidence for intragenic and intergenic interactions between SNP effects in the APOA1/C3/A4/A5 gene cluster. Hum Hered 61:87–96Google Scholar
  36. 36.
    Spence MA, Greenberg DA, Hodge SE, Vieland VJ (2003) The emperor’s new methods. Am J Hum Genet 72:1084–1087PubMedCrossRefGoogle Scholar
  37. 37.
    Brem RB, Kruglyak L (2005) The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci U S A 102:1572–1577PubMedCrossRefGoogle Scholar
  38. 38.
    American Heart Association (2005) Heart disease and stroke statistics—2005 update. American Heart Association, Dallas, TXGoogle Scholar
  39. 39.
    Barrett-Connor E (1997) Sex differences in coronary heart disease. Why are women so superior? The 1995 Ancel Keys Lecture. Circulation 95:252–264PubMedGoogle Scholar
  40. 40.
    Cooper R, Cutler J, Desvigne-Nickens P, Fortmann SP, Friedman L, Havlik R, Hogelin G, Marler J, McGovern P, Morosco G, Mosca L, Pearson T, Stamler J, Stryer D, Thom T (2000) Trends and disparities in coronary heart disease, stroke, and other cardiovascular diseases in the United States: findings of the national conference on cardiovascular disease prevention. Circulation 102:3137–3147PubMedGoogle Scholar
  41. 41.
    Greenlund KJ, Kiefe CI, Gidding SS, Lewis CE, Srinivasan SR, Williams OD, Berenson GS (1998) Differences in cardiovascular disease risk factors in black and white young adults: comparisons among five communities of the CARDIA and the Bogalusa heart studies. Coronary artery risk development in young adults. Ann Epidemiol 8:22–30PubMedCrossRefGoogle Scholar
  42. 42.
    Kiefe CI, Williams OD, Bild DE, Lewis CE, Hilner JE, Oberman A (1997) Regional disparities in the incidence of elevated blood pressure among young adults: the CARDIA study. Circulation 96:1082–1088PubMedGoogle Scholar
  43. 43.
    Schoenborn CA, Adams PF, Barnes PM, Vickerie JL, Schiller JS (2004) Health behaviors of adults: United States, 1999–2001. National Center for Health Statistics. Vital Health Stat 10(219)Google Scholar
  44. 44.
    Helgason A, Yngvadottir B, Hrafnkelsson B, Gulcher J, Stefansson K (2005) An Icelandic example of the impact of population structure on association studies. Nat Genet 37:90–95PubMedGoogle Scholar
  45. 45.
    Jorgenson E, Tang H, Gadde M, Province M, Leppert M, Kardia S, Schork N, Cooper R, Rao DC, Boerwinkle E, Risch N (2005) Ethnicity and human genetic linkage maps. Am J Hum Genet 76:276–290PubMedCrossRefGoogle Scholar
  46. 46.
    Reiner AP, Ziv E, Lind DL, Nievergelt CM, Schork NJ, Cummings SR, Phong A, Burchard EG, Harris TB, Psaty BM, Kwok PY (2005) Population structure, admixture, and aging-related phenotypes in African–American adults: the cardiovascular health study. Am J Hum Genet 76:463–477PubMedCrossRefGoogle Scholar
  47. 47.
    Risch N, Burchard E, Ziv E, Tang H (2002) Categorization of humans in biomedical research: genes, race and disease. Genome Biol 3:1–12CrossRefGoogle Scholar
  48. 48.
    Sawyer SL, Mukherjee N, Pakstis AJ, Feuk L, Kidd JR, Brookes AJ, Kidd KK (2005) Linkage disequilibrium patterns vary substantially among populations. Eur J Hum Genet 13:677–686PubMedCrossRefGoogle Scholar
  49. 49.
    Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4:45–61PubMedCrossRefGoogle Scholar
  50. 50.
    Sing CF, Stengård JH, Kardia SL (2003) Genes, environment and cardiovascular disease. Arterioscler Thromb Vasc Biol 23:1190–1196PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • C. M. Brown
    • 1
  • T. J. Rea
    • 1
  • S. C. Hamon
    • 2
  • J. E. Hixson
    • 3
  • E. Boerwinkle
    • 3
  • A. G. Clark
    • 4
  • C. F. Sing
    • 1
    Email author
  1. 1.Department of Human GeneticsUniversity of MichiganAnn ArborUSA
  2. 2.Laboratory of Statistical GeneticsRockefeller UniversityNew YorkUSA
  3. 3.Human Genetics CenterUniversity of Texas Health Science CenterHoustonUSA
  4. 4.Department of Molecular Biology and GeneticsCornell UniversityIthacaUSA

Personalised recommendations