The sarcomeric Z-disc: a nodal point in signalling and disease

  • Derk Frank
  • Christian Kuhn
  • Hugo A. Katus
  • Norbert Frey


The perception of the Z-disc in striated muscle has undergone significant changes in the past decade. Traditionally, the Z-disc has been viewed as a passive constituent of the sarcomere, which is important only for the cross-linking of thin filaments and transmission of force generated by the myofilaments. The recent discovery of multiple novel molecular components, however, has shed light on an emerging role for the Z-disc in signal transduction in both cardiac and skeletal muscles. Strikingly, mutations in several Z-disc proteins have been shown to cause cardiomyopathies and/or muscular dystrophies. In addition, the elusive cardiac stretch receptor appears to localize to the Z-disc. Various signalling molecules have been shown to interact with Z-disc proteins, several of which shuttle between the Z-disc and other cellular compartments such as the nucleus, underlining the dynamic nature of Z-disc-dependent signalling. In this review, we provide a systematic view on the currently known Z-disc components and the functional significance of the Z-disc as an interface between biomechanical sensing and signalling in cardiac and skeletal muscle functions and diseases.


Striated muscle Sarcomere Z-disc Heart Skeletal muscle Myopathy Cardiomyopathy Stretch receptor Muscle dystrophy Cell biology 



N.F. was supported by grants of the Deutsche Forschungsgemeinschaft (Fr1289/3-1) as well as the Bundesministerium für Forschung und Technologie (BMBF). D.F. was supported by the Young Investigator Award of the University of Heidelberg.


  1. 1.
    Seidman JG, Seidman C (2001) The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104:557–567PubMedGoogle Scholar
  2. 2.
    Clark KA, McElhinny AS, Beckerle MC, Gregorio CC (2002) Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 18:637–706PubMedGoogle Scholar
  3. 3.
    Ervasti JM (2003) Costameres: the Achilles’ heel of Herculean muscle. J Biol Chem 278:13591–13594PubMedGoogle Scholar
  4. 4.
    McKenna MJ, Mills BG, Galey FR, Linthicum FH Jr (1986) Filamentous structures morphologically similar to viral nucleocapsids in otosclerotic lesions in two patients. Am J Otolaryngol 7:25–28Google Scholar
  5. 5.
    Sanger JM, Mittal B, Pochapin MB, Sanger JW (1986) Myofibrillogenesis in living cells microinjected with fluorescently labeled alpha-actinin. J Cell Biol 102:2053–2066PubMedGoogle Scholar
  6. 6.
    Wang J, Shaner N, Mittal B, Zhou Q, Chen J, Sanger JM, Sanger JW (2005) Dynamics of Z-band based proteins in developing skeletal muscle cells. Cell Motil Cytoskeleton 61:34–48PubMedGoogle Scholar
  7. 7.
    Luther PK (1991) Three-dimensional reconstruction of a simple Z-band in fish muscle. J Cell Biol 113:1043–1055PubMedGoogle Scholar
  8. 8.
    Luther PK (2000) Three-dimensional structure of a vertebrate muscle Z-band: implications for titin and alpha-actinin binding. J Struct Biol 129:1–16PubMedGoogle Scholar
  9. 9.
    Yamaguchi M, Izumimoto M, Robson RM, Stromer MH (1985) Fine structure of wide and narrow vertebrate muscle Z-lines. A proposed model and computer simulation of Z-line architecture. J Mol Biol 184:621–643PubMedGoogle Scholar
  10. 10.
    Luther PK, Barry JS, Squire JM (2002) The three-dimensional structure of a vertebrate wide (slow muscle) Z-band: lessons on Z-band assembly. J Mol Biol 315:9–20PubMedGoogle Scholar
  11. 11.
    Gautel M, Goulding D, Bullard B, Weber K, Furst DO (1996) The central Z-disk region of titin is assembled from a novel repeat in variable copy numbers. J Cell Sci 109(Pt 11):2747–2754PubMedGoogle Scholar
  12. 12.
    Luther PK, Padron R, Ritter S, Craig R, Squire JM (2003) Heterogeneity of Z-band structure within a single muscle sarcomere: implications for sarcomere assembly. J Mol Biol 332:161–169PubMedGoogle Scholar
  13. 13.
    Millevoi S, Trombitas K, Kolmerer B, Kostin S, Schaper J, Pelin K, Granzier H, Labeit S (1998) Characterization of nebulette and nebulin and emerging concepts of their roles for vertebrate Z-discs. J Mol Biol 282:111–123PubMedGoogle Scholar
  14. 14.
    Labeit S, Kolmerer B (1995) The complete primary structure of human nebulin and its correlation to muscle structure. J Mol Biol 248:308–315PubMedGoogle Scholar
  15. 15.
    Pyle WG, Solaro RJ (2004) At the crossroads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function. Circ Res 94:296–305PubMedGoogle Scholar
  16. 16.
    Faulkner G, Lanfranchi G, Valle G (2001) Telethonin and other new proteins of the Z-disc of skeletal muscle. IUBMB Life 51:275–282PubMedGoogle Scholar
  17. 17.
    Frey N, Barrientos T, Shelton JM, Frank D, Rutten H, Gehring D, Kuhn C, Lutz M, Rothermel B, Bassel-Duby R, Richardson JA, Katus HA, Hill JA, Olson EN (2004) Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nat Med 10:1336–1343PubMedGoogle Scholar
  18. 18.
    Knoll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, Bang ML, Hayashi T, Shiga N, Yasukawa H, Schaper W, McKenna W, Yokoyama M, Schork NJ, Omens JH, McCulloch AD, Kimura A, Gregorio CC, Poller W, Schaper J, Schultheiss HP, Chien KR (2002) The cardiac mechanical stretch sensor machinery involves a Z-disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111:943–955PubMedGoogle Scholar
  19. 19.
    Gao T, Puri TS, Gerhardstein BL, Chien AJ, Green RD, Hosey MM (1997) Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes. J Biol Chem 272:19401–19407PubMedGoogle Scholar
  20. 20.
    Brancaccio M, Fratta L, Notte A, Hirsch E, Poulet R, Guazzone S, De Acetis M, Vecchione C, Marino G, Altruda F, Silengo L, Tarone G, Lembo G (2003) Melusin, a muscle-specific integrin beta1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med 9:68–75PubMedGoogle Scholar
  21. 21.
    De Acetis M, Notte A, Accornero F, Selvetella G, Brancaccio M, Vecchione C, Sbroggio M, Collino F, Pacchioni B, Lanfranchi G, Aretini A, Ferretti R, Maffei A, Altruda F, Silengo L, Tarone G, Lembo G (2005) Cardiac overexpression of melusin protects from dilated cardiomyopathy due to long-standing pressure overload. Circ Res 96:1087–1094PubMedGoogle Scholar
  22. 22.
    Robson RM, Goll DE, Arakawa N, Stromer MH (1970) Purification and properties of alpha-actinin from rabbit skeletal muscle. Biochim Biophys Acta 200:296–318PubMedGoogle Scholar
  23. 23.
    Otey CA, Carpen O (2004) Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton 58:104–111PubMedGoogle Scholar
  24. 24.
    North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH (1999) A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat Genet 21:353–354PubMedGoogle Scholar
  25. 25.
    Stromer MH, Goll DE (1972) Studies on purified α-actinin. II. Electron microscopic studies on the competitive binding of α-actinin and tropomyosin to Z-line extracted myofibrils. J Mol Biol 67:489–494PubMedGoogle Scholar
  26. 26.
    Mukai H, Toshimori M, Shibata H, Takanaga H, Kitagawa M, Miyahara M, Shimakawa M, Ono Y (1997) Interaction of PKN with alpha-actinin. J Biol Chem 272:4740–4746PubMedGoogle Scholar
  27. 27.
    Park JB, Kim JH, Kim Y, Ha SH, Yoo JS, Du G, Frohman MA, Suh PG, Ryu SH (2000) Cardiac phospholipase D2 localizes to sarcolemmal membranes and is inhibited by alpha-actinin in an ADP-ribosylation factor-reversible manner. J Biol Chem 275:21295–21301PubMedGoogle Scholar
  28. 28.
    Freeman JL, Pitcher JA, Li X, Bennett V, Lefkowitz RJ (2000) alpha-Actinin is a potent regulator of G protein-coupled receptor kinase activity and substrate specificity in vitro. FEBS Lett 473:280–284PubMedGoogle Scholar
  29. 29.
    Mohapatra B, Jimenez S, Lin JH, Bowles KR, Coveler KJ, Marx JG, Chrisco MA, Murphy RT, Lurie PR, Schwartz RJ, Elliott PM, Vatta M, McKenna W, Towbin JA, Bowles NE (2003) Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab 80:207–215PubMedGoogle Scholar
  30. 30.
    Fyrberg C, Ketchum A, Ball E, Fyrberg E (1998) Characterization of lethal Drosophila melanogaster alpha-actinin mutants. Biochem Genet 36:299–310PubMedGoogle Scholar
  31. 31.
    Herman IM (1993) Actin isoforms. Curr Opin Cell Biol 5:48–55PubMedGoogle Scholar
  32. 32.
    Vandekerckhove J, Bugaisky G, Buckingham M (1986) Simultaneous expression of skeletal muscle and heart actin proteins in various striated muscle tissues and cells. A quantitative determination of the two actin isoforms. J Biol Chem 261:1838–1843PubMedGoogle Scholar
  33. 33.
    Olson TM, Michels VV, Thibodeau SN, Tai YS, Keating MT (1998) Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280:750–752PubMedGoogle Scholar
  34. 34.
    Mogensen J, Klausen IC, Pedersen AK, Egeblad H, Bross P, Kruse TA, Gregersen N, Hansen PS, Baandrup U, Borglum AD (1999) Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest 103:R39–R43PubMedGoogle Scholar
  35. 35.
    Olson TM, Doan TP, Kishimoto NY, Whitby FG, Ackerman MJ, Fananapazir L (2000) Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy. J Mol Cell Cardiol 32:1687–1694PubMedGoogle Scholar
  36. 36.
    Spirito P, Seidman CE, McKenna WJ, Maron BJ (1997) The management of hypertrophic cardiomyopathy. N Engl J Med 336:775–785PubMedGoogle Scholar
  37. 37.
    Kumar A, Crawford K, Close L, Madison M, Lorenz J, Doetschman T, Pawlowski S, Duffy J, Neumann J, Robbins J, Boivin GP, O’Toole BA, Lessard JL (1997) Rescue of cardiac alpha-actin-deficient mice by enteric smooth muscle gamma-actin. Proc Natl Acad Sci U S A 94:4406–4411PubMedGoogle Scholar
  38. 38.
    Schafer DA, Korshunova YO, Schroer TA, Cooper JA (1994) Differential localization and sequence analysis of capping protein beta-subunit isoforms of vertebrates. J Cell Biol 127:453–465PubMedGoogle Scholar
  39. 39.
    Papa I, Astier C, Kwiatek O, Raynaud F, Bonnal C, Lebart MC, Roustan C, Benyamin Y (1999) Alpha actinin-CapZ, an anchoring complex for thin filaments in Z-line. J Muscle Res Cell Motil 20:187–197PubMedGoogle Scholar
  40. 40.
    Schafer DA, Hug C, Cooper JA (1995) Inhibition of CapZ during myofibrillogenesis alters assembly of actin filaments. J Cell Biol 128:61–70PubMedGoogle Scholar
  41. 41.
    Schafer DA, Jennings PB, Cooper JA (1996) Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J Cell Biol 135:169–179PubMedGoogle Scholar
  42. 42.
    Hart MC, Cooper JA (1999) Vertebrate isoforms of actin capping protein beta have distinct functions in vivo. J Cell Biol 147:1287–1298PubMedGoogle Scholar
  43. 43.
    Pyle WG, Hart MC, Cooper JA, Sumandea MP, de Tombe PP, Solaro RJ (2002) Actin capping protein: an essential element in protein kinase signaling to the myofilaments. Circ Res 90:1299–1306PubMedGoogle Scholar
  44. 44.
    Granzier HL, Labeit S (2004) The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res 94:284–295PubMedGoogle Scholar
  45. 45.
    Granzier H, Kellermayer M, Helmes M, Trombitas K (1997) Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction. Biophys J 73:2043–2053PubMedGoogle Scholar
  46. 46.
    Trombitas K, Greaser M, Labeit S, Jin JP, Kellermayer M, Helmes M, Granzier H (1998) Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol 140:853–859PubMedGoogle Scholar
  47. 47.
    Mues A, van der Ven PF, Young P, Furst DO, Gautel M (1998) Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformation-dependent way with telethonin. FEBS Lett 428:111–114PubMedGoogle Scholar
  48. 48.
    Gregorio CC, Trombitas K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, Obermayr F, Herrmann B, Granzier H, Sorimachi H, Labeit S (1998) The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. J Cell Biol 143:1013–1027PubMedGoogle Scholar
  49. 49.
    Young P, Ehler E, Gautel M (2001) Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. J Cell Biol 154:123–136PubMedGoogle Scholar
  50. 50.
    Bagnato P, Barone V, Giacomello E, Rossi D, Sorrentino V (2003) Binding of an ankyrin-1 isoform to obscurin suggests a molecular link between the sarcoplasmic reticulum and myofibrils in striated muscles. J Cell Biol 160:245–253PubMedGoogle Scholar
  51. 51.
    Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, Brandmeier B, Franzen G, Hedberg B, Gunnarsson LG, Hughes SM, Marchand S, Sejersen T, Richard I, Edstrom L, Ehler E, Udd B, Gautel M (2005) The kinase domain of titin controls muscle gene expression and protein turnover. Science 308:1599–1603PubMedGoogle Scholar
  52. 52.
    Chen CY, Schwartz RJ (1996) Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription. Mol Cell Biol 16:6372–6384PubMedGoogle Scholar
  53. 53.
    Edstrom L, Thornell LE, Albo J, Landin S, Samuelsson M (1990) Myopathy with respiratory failure and typical myofibrillar lesions. J Neurol Sci 96:211–228PubMedGoogle Scholar
  54. 54.
    Moncman CL, Wang K (1995) Nebulette: a 107 kD nebulin-like protein in cardiac muscle. Cell Motil Cytoskeleton 32:205–225PubMedGoogle Scholar
  55. 55.
    Kruger M, Wright J, Wang K (1991) Nebulin as a length regulator of thin filaments of vertebrate skeletal muscles: correlation of thin filament length, nebulin size, and epitope profile. J Cell Biol 115:97–107PubMedGoogle Scholar
  56. 56.
    McElhinny AS, Kazmierski ST, Labeit S, Gregorio CC (2003) Nebulin: the nebulous, multifunctional giant of striated muscle. Trends Cardiovasc Med 13:195–201PubMedGoogle Scholar
  57. 57.
    Kazmierski ST, Antin PB, Witt CC, Huebner N, McElhinny AS, Labeit S, Gregorio CC (2003) The complete mouse nebulin gene sequence and the identification of cardiac nebulin. J Mol Biol 328:835–846PubMedGoogle Scholar
  58. 58.
    Arimura T, Nakamura T, Hiroi S, Satoh M, Takahashi M, Ohbuchi N, Ueda K, Nouchi T, Yamaguchi N, Akai J, Matsumori A, Sasayama S, Kimura A (2000) Characterization of the human nebulette gene: a polymorphism in an actin-binding motif is associated with nonfamilial idiopathic dilated cardiomyopathy. Hum Genet 107:440–451PubMedGoogle Scholar
  59. 59.
    Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, Labeit S (2001) The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89:1065–1072PubMedGoogle Scholar
  60. 60.
    Russell MW, Raeker MO, Korytkowski KA, Sonneman KJ (2002) Identification, tissue expression and chromosomal localization of human Obscurin–MLCK, a member of the titin and Dbl families of myosin light chain kinases. Gene 282:237–246PubMedGoogle Scholar
  61. 61.
    Noegel AA, Rapp S, Lottspeich F, Schleicher M, Stewart M (1989) The Dictyostelium gelation factor shares a putative actin binding site with alpha-actinins and dystrophin and also has a rod domain containing six 100-residue motifs that appear to have a cross-beta conformation. J Cell Biol 109:607–618PubMedGoogle Scholar
  62. 62.
    van der Ven PF, Wiesner S, Salmikangas P, Auerbach D, Himmel M, Kempa S, Hayess K, Pacholsky D, Taivainen A, Schroder R, Carpen O, Furst DO (2000) Indications for a novel muscular dystrophy pathway. gamma-filamin, the muscle-specific filamin isoform, interacts with myotilin. J Cell Biol 151:235–248PubMedGoogle Scholar
  63. 63.
    Thompson TG, Chan YM, Hack AA, Brosius M, Rajala M, Lidov HG, McNally EM, Watkins S, Kunkel LM (2000) Filamin 2 (FLN2): a muscle-specific sarcoglycan interacting protein. J Cell Biol 148:115–126PubMedGoogle Scholar
  64. 64.
    Frey N, Olson EN (2002) Calsarcin-3, a novel skeletal muscle-specific member of the calsarcin family, interacts with multiple Z-disc proteins. J Biol Chem 277:13998–14004PubMedGoogle Scholar
  65. 65.
    Faulkner G, Pallavicini A, Comelli A, Salamon M, Bortoletto G, Ievolella C, Trevisan S, Kojic S, Dalla Vecchia F, Laveder P, Valle G, Lanfranchi G (2000) FATZ, a filamin-, actinin-, and telethonin-binding protein of the Z-disc of skeletal muscle. J Biol Chem 275:41234–41242PubMedGoogle Scholar
  66. 66.
    Takada F, Vander Woude DL, Tong HQ, Thompson TG, Watkins SC, Kunkel LM, Beggs AH (2001) Myozenin: an alpha-actinin- and gamma-filamin-binding protein of skeletal muscle Z lines. Proc Natl Acad Sci U S A 98:1595–1600PubMedGoogle Scholar
  67. 67.
    Gontier Y, Taivainen A, Fontao L, Sonnenberg A, van der Flier A, Carpen O, Faulkner G, Borradori L (2005) The Z-disc proteins myotilin and FATZ-1 interact with each other and are connected to the sarcolemma via muscle-specific filamins. J Cell Sci 118:3739–3749PubMedGoogle Scholar
  68. 68.
    Vorgerd M, van der Ven PF, Bruchertseifer V, Lowe T, Kley RA, Schroder R, Lochmuller H, Himmel M, Koehler K, Furst DO, Huebner A (2005) A mutation in the dimerization domain of filamin C causes a novel type of autosomal dominant myofibrillar myopathy. Am J Hum Genet 77:297–304PubMedGoogle Scholar
  69. 69.
    Buxton DB, Golomb E, Adelstein RS (2003) Induction of nonmuscle myosin heavy chain II-C by butyrate in RAW 264.7 mouse macrophages. J Biol Chem 278:15449–15455PubMedGoogle Scholar
  70. 70.
    Bridgman PC, Dave S, Asnes CF, Tullio AN, Adelstein RS (2001) Myosin IIB is required for growth cone motility. J Neurosci 21:6159–6169PubMedGoogle Scholar
  71. 71.
    Field C, Li R, Oegema K (1999) Cytokinesis in eukaryotes: a mechanistic comparison. Curr Opin Cell Biol 11:68–80PubMedGoogle Scholar
  72. 72.
    Takeda K, Yu ZX, Qian S, Chin TK, Adelstein RS, Ferrans VJ (2000) Nonmuscle myosin II localizes to the Z-lines and intercalated discs of cardiac muscle and to the Z-lines of skeletal muscle. Cell Motil Cytoskeleton 46:59–68PubMedGoogle Scholar
  73. 73.
    Tullio AN, Accili D, Ferrans VJ, Yu ZX, Takeda K, Grinberg A, Westphal H, Preston YA, Adelstein RS (1997) Nonmuscle myosin II-B is required for normal development of the mouse heart. Proc Natl Acad Sci U S A 94:12407–12412PubMedGoogle Scholar
  74. 74.
    Uren D, Hwang HK, Hara Y, Takeda K, Kawamoto S, Tullio AN, Yu ZX, Ferrans VJ, Tresser N, Grinberg A, Preston YA, Adelstein RS (2000) Gene dosage affects the cardiac and brain phenotype in nonmuscle myosin II-B-depleted mice. J Clin Invest 105:663–671PubMedGoogle Scholar
  75. 75.
    Rhee D, Sanger JM, Sanger JW (1994) The premyofibril: evidence for its role in myofibrillogenesis. Cell Motil Cytoskeleton 28:1–24PubMedGoogle Scholar
  76. 76.
    Siebrands CC, Sanger JM, Sanger JW (2004) Myofibrillogenesis in skeletal muscle cells in the presence of taxol. Cell Motil Cytoskeleton 58:39–52PubMedGoogle Scholar
  77. 77.
    Sanger JW, Chowrashi P, Shaner NC, Spalthoff S, Wang J, Freeman NL, Sanger JM (2002) Myofibrillogenesis in skeletal muscle cells. Clin Orthop S153–S162Google Scholar
  78. 78.
    Salmikangas P, Mykkanen OM, Gronholm M, Heiska L, Kere J, Carpen O (1999) Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy. Hum Mol Genet 8:1329–1336PubMedGoogle Scholar
  79. 79.
    Salmikangas P, van der Ven PF, Lalowski M, Taivainen A, Zhao F, Suila H, Schroder R, Lappalainen P, Furst DO, Carpen O (2003) Myotilin, the limb-girdle muscular dystrophy 1A (LGMD1A) protein, cross-links actin filaments and controls sarcomere assembly. Hum Mol Genet 12:189–203PubMedGoogle Scholar
  80. 80.
    Hauser MA, Horrigan SK, Salmikangas P, Torian UM, Viles KD, Dancel R, Tim RW, Taivainen A, Bartoloni L, Gilchrist JM, Stajich JM, Gaskell PC, Gilbert JR, Vance JM, Pericak-Vance MA, Carpen O, Westbrook CA, Speer MC (2000) Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum Mol Genet 9:2141–2147PubMedGoogle Scholar
  81. 81.
    Selcen D, Engel AG (2004) Mutations in myotilin cause myofibrillar myopathy. Neurology 62:1363–1371PubMedGoogle Scholar
  82. 82.
    Olive M, Goldfarb LG, Shatunov A, Fischer D, Ferrer I (2005) Myotilinopathy: refining the clinical and myopathological phenotype. Brain 128:2315–2326PubMedGoogle Scholar
  83. 83.
    Bang ML, Mudry RE, McElhinny AS, Trombitas K, Geach AJ, Yamasaki R, Sorimachi H, Granzier H, Gregorio CC, Labeit S (2001) Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J Cell Biol 153:413–427PubMedGoogle Scholar
  84. 84.
    Parast MM, Otey CA (2000) Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. J Cell Biol 150:643–656PubMedGoogle Scholar
  85. 85.
    Zou Y, Evans S, Chen J, Kuo HC, Harvey RP, Chien KR (1997) CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway. Development 124:793–804PubMedGoogle Scholar
  86. 86.
    Miller MK, Bang ML, Witt CC, Labeit D, Trombitas C, Watanabe K, Granzier H, McElhinny AS, Gregorio CC, Labeit S (2003) The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament-based stress response molecules. J Mol Biol 333:951–964PubMedGoogle Scholar
  87. 87.
    Hung AY, Sheng M (2002) PDZ domains: structural modules for protein complex assembly. J Biol Chem 277:5699–5702PubMedGoogle Scholar
  88. 88.
    Harris BZ, Lim WA (2001) Mechanism and role of PDZ domains in signaling complex assembly. J Cell Sci 114:3219–3231PubMedGoogle Scholar
  89. 89.
    Kadrmas JL, Beckerle MC (2004) The LIM domain: from the cytoskeleton to the nucleus. Nat Rev Mol Cell Biol 5:920–931PubMedGoogle Scholar
  90. 90.
    Schmeichel KL, Beckerle MC (1994) The LIM domain is a modular protein-binding interface. Cell 79:211–219PubMedGoogle Scholar
  91. 91.
    Xia H, Winokur ST, Kuo WL, Altherr MR, Bredt DS (1997) Actinin-associated LIM protein: identification of a domain interaction between PDZ and spectrin-like repeat motifs. J Cell Biol 139:507–515PubMedGoogle Scholar
  92. 92.
    Pashmforoush M, Pomies P, Peterson KL, Kubalak S, Ross J Jr, Hefti A, Aebi U, Beckerle MC, Chien KR (2001) Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Nat Med 7:591–597PubMedGoogle Scholar
  93. 93.
    Jo K, Rutten B, Bunn RC, Bredt DS (2001) Actinin-associated LIM protein-deficient mice maintain normal development and structure of skeletal muscle. Mol Cell Biol 21:1682–1687PubMedGoogle Scholar
  94. 94.
    Altherr MR, Bengtsson U, Markovich RP, Winokur ST (1995) Efforts toward understanding the molecular basis of facioscapulohumeral muscular dystrophy. Muscle Nerve 2:S32–S38PubMedGoogle Scholar
  95. 95.
    Faulkner G, Pallavicini A, Formentin E, Comelli A, Ievolella C, Trevisan S, Bortoletto G, Scannapieco P, Salamon M, Mouly V, Valle G, Lanfranchi G (1999) ZASP: a new Z-band alternatively spliced PDZ-motif protein. J Cell Biol 146:465–475PubMedGoogle Scholar
  96. 96.
    Kuroda S, Tokunaga C, Kiyohara Y, Higuchi O, Konishi H, Mizuno K, Gill GN, Kikkawa U (1996) Protein–protein interaction of zinc finger LIM domains with protein kinase C. J Biol Chem 271:31029–31032PubMedGoogle Scholar
  97. 97.
    Huang C, Zhou Q, Liang P, Hollander MS, Sheikh F, Li X, Greaser M, Shelton GD, Evans S, Chen J (2003) Characterization and in vivo functional analysis of splice variants of cypher. J Biol Chem 278:7360–7365PubMedGoogle Scholar
  98. 98.
    Zhou Q, Chu PH, Huang C, Cheng CF, Martone ME, Knoll G, Shelton GD, Evans S, Chen J (2001) Ablation of Cypher, a PDZ–LIM domain Z-line protein, causes a severe form of congenital myopathy. J Cell Biol 155:605–612PubMedGoogle Scholar
  99. 99.
    Vatta M, Mohapatra B, Jimenez S, Sanchez X, Faulkner G, Perles Z, Sinagra G, Lin JH, Vu TM, Zhou Q, Bowles KR, Di Lenarda A, Schimmenti L, Fox M, Chrisco MA, Murphy RT, McKenna W, Elliott P, Bowles NE, Chen J, Valle G, Towbin JA (2003) Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol 42:2014–2027PubMedGoogle Scholar
  100. 100.
    Arimura T, Hayashi T, Terada H, Lee SY, Zhou Q, Takahashi M, Ueda K, Nouchi T, Hohda S, Shibutani M, Hirose M, Chen J, Park JE, Yasunami M, Hayashi H, Kimura A (2004) A Cypher/ZASP mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase C. J Biol Chem 279:6746–6752PubMedGoogle Scholar
  101. 101.
    Selcen D, Engel AG (2005) Mutations in ZASP define a novel form of muscular dystrophy in humans. Ann Neurol 57:269–276PubMedGoogle Scholar
  102. 102.
    Wu R, Durick K, Songyang Z, Cantley LC, Taylor SS, Gill GN (1996) Specificity of LIM domain interactions with receptor tyrosine kinases. J Biol Chem 271:15934–15941PubMedGoogle Scholar
  103. 103.
    Dyson JM, O’Malley CJ, Becanovic J, Munday AD, Berndt MC, Coghill ID, Nandurkar HH, Ooms LM, Mitchell CA (2001) The SH2-containing inositol polyphosphate 5-phosphatase, SHIP-2, binds filamin and regulates submembraneous actin. J Cell Biol 155:1065–1079PubMedGoogle Scholar
  104. 104.
    Guy PM, Kenny DA, Gill GN (1999) The PDZ domain of the LIM protein enigma binds to beta-tropomyosin. Mol Biol Cell 10:1973–1984PubMedGoogle Scholar
  105. 105.
    Nakagawa N, Hoshijima M, Oyasu M, Saito N, Tanizawa K, Kuroda S (2000) ENH, containing PDZ and LIM domains, heart/skeletal muscle-specific protein, associates with cytoskeletal proteins through the PDZ domain. Biochem Biophys Res Commun 272:505–512PubMedGoogle Scholar
  106. 106.
    Maeno-Hikichi Y, Chang S, Matsumura K, Lai M, Lin H, Nakagawa N, Kuroda S, Zhang JF (2003) A PKC epsilon-ENH-channel complex specifically modulates N-type Ca2+ channels. Nat Neurosci 6:468–475PubMedGoogle Scholar
  107. 107.
    Kotaka M, Ngai SM, Garcia-Barcelo M, Tsui SK, Fung KP, Lee CY, Waye MM (1999) Characterization of the human 36-kDa carboxyl terminal LIM domain protein (hCLIM1). J Cell Biochem 72:279–285PubMedGoogle Scholar
  108. 108.
    Kotaka M, Kostin S, Ngai S, Chan K, Lau Y, Lee SM, Li H, Ng EK, Schaper J, Tsui SK, Fung K, Lee C, Waye MM (2000) Interaction of hCLIM1, an enigma family protein, with alpha-actinin 2. J Cell Biochem 78:558–565PubMedGoogle Scholar
  109. 109.
    Kotaka M, Lau YM, Cheung KK, Lee SM, Li HY, Chan WY, Fung KP, Lee CY, Waye MM, Tsui SK (2001) Elfin is expressed during early heart development. J Cell Biochem 83:463–472PubMedGoogle Scholar
  110. 110.
    Vallenius T, Luukko K, Makela TP (2000) CLP-36 PDZ–LIM protein associates with nonmuscle alpha-actinin-1 and alpha-actinin-4. J Biol Chem 275:11100–11105PubMedGoogle Scholar
  111. 111.
    Vallenius T, Makela TP (2002) Clik1: a novel kinase targeted to actin stress fibers by the CLP-36 PDZ–LIM protein. J Cell Sci 115:2067–2073PubMedGoogle Scholar
  112. 112.
    Greene WK, Baker E, Rabbitts TH, Kees UR (1999) Genomic structure, tissue expression and chromosomal location of the LIM-only gene, SLIM1. Gene 232:203–207PubMedGoogle Scholar
  113. 113.
    Brown S, Biben C, Ooms LM, Maimone M, McGrath MJ, Gurung R, Harvey RP, Mitchell CA (1999) The cardiac expression of striated muscle LIM protein 1 (SLIM1) is restricted to the outflow tract of the developing heart. J Mol Cell Cardiol 31:837–843PubMedGoogle Scholar
  114. 114.
    Chu PH, Ruiz-Lozano P, Zhou Q, Cai C, Chen J (2000) Expression patterns of FHL/SLIM family members suggest important functional roles in skeletal muscle and cardiovascular system. Mech Dev 95:259–265PubMedGoogle Scholar
  115. 115.
    Lim DS, Roberts R, Marian AJ (2001) Expression profiling of cardiac genes in human hypertrophic cardiomyopathy: insight into the pathogenesis of phenotypes. J Am Coll Cardiol 38:1175–1180PubMedGoogle Scholar
  116. 116.
    McGrath MJ, Mitchell CA, Coghill ID, Robinson PA, Brown S (2003) Skeletal muscle LIM protein 1 (SLIM1/FHL1) induces alpha 5 beta 1-integrin-dependent myocyte elongation. Am J Physiol Cell Physiol 285:C1513–C1526PubMedGoogle Scholar
  117. 117.
    Fimia GM, De Cesare D, Sassone-Corsi P (2000) A family of LIM-only transcriptional coactivators: tissue-specific expression and selective activation of CREB and CREM. Mol Cell Biol 20:8613–8622PubMedGoogle Scholar
  118. 118.
    Genini M, Schwalbe P, Scholl FA, Remppis A, Mattei MG, Schafer BW (1997) Subtractive cloning and characterization of DRAL, a novel LIM-domain protein down-regulated in rhabdomyosarcoma. DNA Cell Biol 16:433–442PubMedGoogle Scholar
  119. 119.
    Purcell NH, Darwis D, Bueno OF, Muller JM, Schule R, Molkentin JD (2004) Extracellular signal-regulated kinase 2 interacts with and is negatively regulated by the LIM-only protein FHL2 in cardiomyocytes. Mol Cell Biol 24:1081–1095PubMedGoogle Scholar
  120. 120.
    Samson T, Smyth N, Janetzky S, Wendler O, Muller JM, Schule R, von der Mark H, von der Mark K, Wixler V (2004) The LIM-only proteins FHL2 and FHL3 interact with alpha- and beta-subunits of the muscle alpha7beta1 integrin receptor. J Biol Chem 279:28641–28652PubMedGoogle Scholar
  121. 121.
    Chu PH, Bardwell WM, Gu Y, Ross J Jr, Chen J (2000) FHL2 (SLIM3) is not essential for cardiac development and function. Mol Cell Biol 20:7460–7462PubMedGoogle Scholar
  122. 122.
    Kong Y, Shelton JM, Rothermel B, Li X, Richardson JA, Bassel-Duby R, Williams RS (2001) Cardiac-specific LIM protein FHL2 modifies the hypertrophic response to beta-adrenergic stimulation. Circulation 103:2731–2738PubMedGoogle Scholar
  123. 123.
    Lange S, Auerbach D, McLoughlin P, Perriard E, Schafer BW, Perriard JC, Ehler E (2002) Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2. J Cell Sci 115:4925–4936PubMedGoogle Scholar
  124. 124.
    Morgan MJ, Madgwick AJ (1996) Slim defines a novel family of LIM-proteins expressed in skeletal muscle. Biochem Biophys Res Commun 225:632–638PubMedGoogle Scholar
  125. 125.
    Muller JM, Metzger E, Greschik H, Bosserhoff AK, Mercep L, Buettner R, Schule R (2002) The transcriptional coactivator FHL2 transmits Rho signals from the cell membrane into the nucleus. EMBO J 21:736–748PubMedGoogle Scholar
  126. 126.
    Coghill ID, Brown S, Cottle DL, McGrath MJ, Robinson PA, Nandurkar HH, Dyson JM, Mitchell CA (2003) FHL3 is an actin-binding protein that regulates alpha-actinin-mediated actin bundling: FHL3 localizes to actin stress fibers and enhances cell spreading and stress fiber disassembly. J Biol Chem 278:24139–24152PubMedGoogle Scholar
  127. 127.
    Weins A, Schwarz K, Faul C, Barisoni L, Linke WA, Mundel P (2001) Differentiation- and stress-dependent nuclear cytoplasmic redistribution of myopodin, a novel actin-bundling protein. J Cell Biol 155:393–404PubMedGoogle Scholar
  128. 128.
    Crawford AW, Michelsen JW, Beckerle MC (1992) An interaction between zyxin and alpha-actinin. J Cell Biol 116:1381–1393PubMedGoogle Scholar
  129. 129.
    Louis HA, Pino JD, Schmeichel KL, Pomies P, Beckerle MC (1997) Comparison of three members of the cysteine-rich protein family reveals functional conservation and divergent patterns of gene expression. J Biol Chem 272:27484–27491PubMedGoogle Scholar
  130. 130.
    Macalma T, Otte J, Hensler ME, Bockholt SM, Louis HA, Kalff-Suske M, Grzeschik KH, von der Ahe D, Beckerle MC (1996) Molecular characterization of human zyxin. J Biol Chem 271:31470–31478PubMedGoogle Scholar
  131. 131.
    Nix DA, Beckerle MC (1997) Nuclear-cytoplasmic shuttling of the focal contact protein, zyxin: a potential mechanism for communication between sites of cell adhesion and the nucleus. J Cell Biol 138:1139–1147PubMedGoogle Scholar
  132. 132.
    Nix DA, Fradelizi J, Bockholt S, Menichi B, Louvard D, Friederich E, Beckerle MC (2001) Targeting of zyxin to sites of actin membrane interaction and to the nucleus. J Biol Chem 276:34759–34767PubMedGoogle Scholar
  133. 133.
    Hoffman LM, Nix DA, Benson B, Boot-Hanford R, Gustafsson E, Jamora C, Menzies AS, Goh KL, Jensen CC, Gertler FB, Fuchs E, Fassler R, Beckerle MC (2003) Targeted disruption of the murine zyxin gene. Mol Cell Biol 23:70–79PubMedGoogle Scholar
  134. 134.
    Kato T, Muraski J, Chen Y, Tsujita Y, Wall J, Glembotski CC, Schaefer E, Beckerle M, Sussman MA (2005) Atrial natriuretic peptide promotes cardiomyocyte survival by cGMP-dependent nuclear accumulation of zyxin and Akt. J Clin Invest 115:2716–2730PubMedGoogle Scholar
  135. 135.
    Heineke J, Ruetten H, Willenbockel C, Gross SC, Naguib M, Schaefer A, Kempf T, Hilfiker-Kleiner D, Caroni P, Kraft T, Kaiser RA, Molkentin JD, Drexler H, Wollert KC (2005) Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc. Proc Natl Acad Sci U S A 102:1655–1660PubMedGoogle Scholar
  136. 136.
    Arber S, Halder G, Caroni P (1994) Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell 79:221–231PubMedGoogle Scholar
  137. 137.
    Kong Y, Flick MJ, Kudla AJ, Konieczny SF (1997) Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol Cell Biol 17:4750–4760PubMedGoogle Scholar
  138. 138.
    Flick MJ, Konieczny SF (2000) The muscle regulatory and structural protein MLP is a cytoskeletal binding partner of betaI-spectrin. J Cell Sci 113(Pt 9):1553–1564PubMedGoogle Scholar
  139. 139.
    Arber S, Hunter JJ, Ross J Jr, Hongo M, Sansig G, Borg J, Perriard JC, Chien KR, Caroni P (1997) MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88:393–403PubMedGoogle Scholar
  140. 140.
    Minamisawa S, Hoshijima M, Chu G, Ward CA, Frank K, Gu Y, Martone ME, Wang Y, Ross J Jr, Kranias EG, Giles WR, Chien KR (1999) Chronic phospholamban–sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99:313–322PubMedGoogle Scholar
  141. 141.
    Geier C, Perrot A, Ozcelik C, Binner P, Counsell D, Hoffmann K, Pilz B, Martiniak Y, Gehmlich K, van der Ven PF, Furst DO, Vornwald A, von Hodenberg E, Nurnberg P, Scheffold T, Dietz R, Osterziel KJ (2003) Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation 107:1390–1395PubMedGoogle Scholar
  142. 142.
    Gehmlich K, Geier C, Osterziel KJ, Van der Ven PF, Furst DO (2004) Decreased interactions of mutant muscle LIM protein (MLP) with N-RAP and alpha-actinin and their implication for hypertrophic cardiomyopathy. Cell Tissue Res 317:129–136PubMedGoogle Scholar
  143. 143.
    Zolk O, Caroni P, Bohm M (2000) Decreased expression of the cardiac LIM domain protein MLP in chronic human heart failure. Circulation 101:2674–2677PubMedGoogle Scholar
  144. 144.
    Valle G, Faulkner G, De Antoni A, Pacchioni B, Pallavicini A, Pandolfo D, Tiso N, Toppo S, Trevisan S, Lanfranchi G (1997) Telethonin, a novel sarcomeric protein of heart and skeletal muscle. FEBS Lett 415:163–168PubMedGoogle Scholar
  145. 145.
    Furukawa T, Ono Y, Tsuchiya H, Katayama Y, Bang ML, Labeit D, Labeit S, Inagaki N, Gregorio CC (2001) Specific interaction of the potassium channel beta-subunit minK with the sarcomeric protein T-cap suggests a T-tubule–myofibril linking system. J Mol Biol 313:775–784PubMedGoogle Scholar
  146. 146.
    Zobel C, Kassiri Z, Nguyen TT, Meng Y, Backx PH (2002) Prevention of hypertrophy by overexpression of Kv4.2 in cultured neonatal cardiomyocytes. Circulation 106:2385–2391PubMedGoogle Scholar
  147. 147.
    Sah R, Oudit GY, Nguyen TT, Lim HW, Wickenden AD, Wilson GJ, Molkentin JD, Backx PH (2002) Inhibition of calcineurin and sarcolemmal Ca2+ influx protects cardiac morphology and ventricular function in K(v)4.2N transgenic mice. Circulation 105:1850–1856PubMedGoogle Scholar
  148. 148.
    Kontrogianni-Konstantopoulos A, Bloch RJ (2003) The hydrophilic domain of small ankyrin-1 interacts with the two N-terminal immunoglobulin domains of titin. J Biol Chem 278:3985–3991PubMedGoogle Scholar
  149. 149.
    Frey N, Richardson JA, Olson EN (2000) Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc Natl Acad Sci U S A 97:14632–14637PubMedGoogle Scholar
  150. 150.
    Lee SJ (2004) Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 20:61–86PubMedGoogle Scholar
  151. 151.
    Mayans O, van der Ven PF, Wilm M, Mues A, Young P, Furst DO, Wilmanns M, Gautel M (1998) Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 395:863–869PubMedGoogle Scholar
  152. 152.
    Obermann WM, Gautel M, Steiner F, van der Ven PF, Weber K, Furst DO (1996) The structure of the sarcomeric M band: localization of defined domains of myomesin, M-protein, and the 250-kD carboxy-terminal region of titin by immunoelectron microscopy. J Cell Biol 134:1441–1453PubMedGoogle Scholar
  153. 153.
    Hayashi T, Arimura T, Itoh-Satoh M, Ueda K, Hohda S, Inagaki N, Takahashi M, Hori H, Yasunami M, Nishi H, Koga Y, Nakamura H, Matsuzaki M, Choi BY, Bae SW, You CW, Han KH, Park JE, Knoll R, Hoshijima M, Chien KR, Kimura A (2004) Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J Am Coll Cardiol 44:2192–2201PubMedGoogle Scholar
  154. 154.
    Cazorla O, Wu Y, Irving TC, Granzier H (2001) Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. Circ Res 88:1028–1035PubMedGoogle Scholar
  155. 155.
    Morimoto S, Yanaga F, Minakami R, Ohtsuki I (1998) Ca2+-sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy. Am J Physiol 275:C200–C207PubMedGoogle Scholar
  156. 156.
    Westfall MV, Borton AR, Albayya FP, Metzger JM (2002) Myofilament calcium sensitivity and cardiac disease: insights from troponin I isoforms and mutants. Circ Res 91:525–531PubMedGoogle Scholar
  157. 157.
    Moreira ES, Wiltshire TJ, Faulkner G, Nilforoushan A, Vainzof M, Suzuki OT, Valle G, Reeves R, Zatz M, Passos-Bueno MR, Jenne DE (2000) Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat Genet 24:163–166PubMedGoogle Scholar
  158. 158.
    Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, Bourg N, Brenguier L, Devaud C, Pasturaud P, Roudaut C et al (1995) Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81:27–40PubMedGoogle Scholar
  159. 159.
    Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z, Sadeh M, Mahjneh I, Marconi G, Passos-Bueno MR, Moreira Ede S, Zatz M, Beckmann JS, Bushby K (1998) A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet 20:37–42PubMedGoogle Scholar
  160. 160.
    Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228PubMedGoogle Scholar
  161. 161.
    Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79PubMedGoogle Scholar
  162. 162.
    Zou Y, Yao A, Zhu W, Kudoh S, Hiroi Y, Shimoyama M, Uozumi H, Kohmoto O, Takahashi T, Shibasaki F, Nagai R, Yazaki Y, Komuro I (2001) Isoproterenol activates extracellular signal-regulated protein kinases in cardiomyocytes through calcineurin. Circulation 104:102–108PubMedGoogle Scholar
  163. 163.
    van der Ven PF, Obermann WM, Lemke B, Gautel M, Weber K, Furst DO (2000) Characterization of muscle filamin isoforms suggests a possible role of gamma-filamin/ABP-L in sarcomeric Z-disc formation. Cell Motil Cytoskeleton 45:149–162PubMedGoogle Scholar
  164. 164.
    Zhou Q, Ruiz-Lozano P, Martone ME, Chen J (1999) Cypher, a striated muscle-restricted PDZ and LIM domain-containing protein, binds to alpha-actinin-2 and protein kinase C. J Biol Chem 274:19807–19813PubMedGoogle Scholar
  165. 165.
    Passier R, Richardson JA, Olson EN (2000) Oracle, a novel PDZ–LIM domain protein expressed in heart and skeletal muscle. Mech Dev 92:277–284PubMedGoogle Scholar
  166. 166.
    Vorgerd M, van der Ven PF, Bruchertseifer V, Lowe T, Kley RA, Schroder R, Lochmuller H, Himmel M, Koehler K, Furst DO, Huebner A (2005) A mutation in the dimerization domain of filamin C causes a novel type of autosomal dominant myofibrillar myopathy. Am J Hum Genet 77:297–304PubMedGoogle Scholar
  167. 167.
    Li HH, Kedar V, Zhang C, McDonough H, Arya R, Wang DZ, Patterson C (2004) Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest 114:1058–1071PubMedGoogle Scholar
  168. 168.
    Rothermel BA, McKinsey TA, Vega RB, Nicol RL, Mammen P, Yang J, Antos CL, Shelton JM, Bassel-Duby R, Olson EN, Williams RS (2001) Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A 98:3328–3333PubMedGoogle Scholar
  169. 169.
    De Windt LJ, Lim HW, Bueno OF, Liang Q, Delling U, Braz JC, Glascock BJ, Kimball TF, del Monte F, Hajjar RJ, Molkentin JD (2001) Targeted inhibition of calcineurin attenuates cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A 98:3322–3327PubMedGoogle Scholar
  170. 170.
    Bueno OF, Wilkins BJ, Tymitz KM, Glascock BJ, Kimball TF, Lorenz JN, Molkentin JD (2002) Impaired cardiac hypertrophic response in Calcineurin Abeta-deficient mice. Proc Natl Acad Sci U S A 99:4586–4591PubMedGoogle Scholar
  171. 171.
    Crabtree GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109(Suppl):S67–S79PubMedGoogle Scholar
  172. 172.
    Liu Y, Cseresnyes Z, Randall WR, Schneider MF (2001) Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers. J Cell Biol 155:27–39PubMedGoogle Scholar
  173. 173.
    Faul C, Huttelmaier S, Oh J, Hachet V, Singer RH, Mundel P (2005) Promotion of importin alpha-mediated nuclear import by the phosphorylation-dependent binding of cargo protein to 14-3-3. J Cell Biol 169:415–424PubMedGoogle Scholar
  174. 174.
    Newton AC (1995) Protein kinase C: structure, function, and regulation. J Biol Chem 270:28495–28498PubMedGoogle Scholar
  175. 175.
    Dorn GW II, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537PubMedGoogle Scholar
  176. 176.
    Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212PubMedGoogle Scholar
  177. 177.
    Huang XP, Pi Y, Lokuta AJ, Greaser ML, Walker JW (1997) Arachidonic acid stimulates protein kinase C-epsilon redistribution in heart cells. J Cell Sci 110(Pt 14):1625–1634PubMedGoogle Scholar
  178. 178.
    Disatnik MH, Buraggi G, Mochly-Rosen D (1994) Localization of protein kinase C isozymes in cardiac myocytes. Exp Cell Res 210:287–297PubMedGoogle Scholar
  179. 179.
    Robia SL, Ghanta J, Robu VG, Walker JW (2001) Localization and kinetics of protein kinase C-epsilon anchoring in cardiac myocytes. Biophys J 80:2140–2151PubMedGoogle Scholar
  180. 180.
    D’Angelo DD, Sakata Y, Lorenz JN, Boivin GP, Walsh RA, Liggett SB, Dorn GW II (1997) Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci U S A 94:8121–8126PubMedGoogle Scholar
  181. 181.
    Gu X, Bishop SP (1994) Increased protein kinase C and isozyme redistribution in pressure-overload cardiac hypertrophy in the rat. Circ Res 75:926–931PubMedGoogle Scholar
  182. 182.
    Wu G, Toyokawa T, Hahn H, Dorn GW II (2000) Epsilon protein kinase C in pathological myocardial hypertrophy. Analysis by combined transgenic expression of translocation modifiers and Galphaq. J Biol Chem 275:29927–29930PubMedGoogle Scholar
  183. 183.
    Chen CH, Gray MO, Mochly-Rosen D (1999) Cardioprotection from ischemia by a brief exposure to physiological levels of ethanol: role of epsilon protein kinase C. Proc Natl Acad Sci U S A 96:12784–12789PubMedGoogle Scholar
  184. 184.
    Dorn GW II, Souroujon MC, Liron T, Chen CH, Gray MO, Zhou HZ, Csukai M, Wu G, Lorenz JN, Mochly-Rosen D (1999) Sustained in vivo cardiac protection by a rationally designed peptide that causes epsilon protein kinase C translocation. Proc Natl Acad Sci U S A 96:12798–12803PubMedGoogle Scholar
  185. 185.
    Sabri A, Wilson BA, Steinberg SF (2002) Dual actions of the Galpha(q) agonist Pasteurella multocida toxin to promote cardiomyocyte hypertrophy and enhance apoptosis susceptibility. Circ Res 90:850–857PubMedGoogle Scholar
  186. 186.
    Strait JB III, Martin JL, Bayer A, Mestril R, Eble DM, Samarel AM (2001) Role of protein kinase C-epsilon in hypertrophy of cultured neonatal rat ventricular myocytes. Am J Physiol Heart Circ Physiol 280:H756–H766PubMedGoogle Scholar
  187. 187.
    Takeishi Y, Ping P, Bolli R, Kirkpatrick DL, Hoit BD, Walsh RA (2000) Transgenic overexpression of constitutively active protein kinase C epsilon causes concentric cardiac hypertrophy. Circ Res 86:1218–1223PubMedGoogle Scholar
  188. 188.
    Khasar SG, Lin YH, Martin A, Dadgar J, McMahon T, Wang D, Hundle B, Aley KO, Isenberg W, McCarter G, Green PG, Hodge CW, Levine JD, Messing RO (1999) A novel nociceptor signaling pathway revealed in protein kinase C epsilon mutant mice. Neuron 24:253–260PubMedGoogle Scholar
  189. 189.
    Torsoni AS, Constancio SS, Nadruz W Jr, Hanks SK, Franchini KG (2003) Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ Res 93:140–147PubMedGoogle Scholar
  190. 190.
    Nadruz W Jr, Corat MA, Marin TM, Guimaraes Pereira GA, Franchini KG (2005) Focal adhesion kinase mediates MEF2 and c-Jun activation by stretch: role in the activation of the cardiac hypertrophic genetic program. Cardiovasc Res 68:87–97PubMedGoogle Scholar
  191. 191.
    Arya R, Kedar V, Hwang JR, McDonough H, Li HH, Taylor J, Patterson C (2004) Muscle ring finger protein-1 inhibits PKC{epsilon} activation and prevents cardiomyocyte hypertrophy. J Cell Biol 167:1147–1159PubMedGoogle Scholar
  192. 192.
    Iwata M, Maturana A, Hoshijima M, Tatematsu K, Okajima T, Vandenheede JR, Van Lint J, Tanizawa K, Kuroda S (2005) PKCepsilon-PKD1 signaling complex at Z-discs plays a pivotal role in the cardiac hypertrophy induced by G-protein coupling receptor agonists. Biochem Biophys Res Commun 327:1105–1113PubMedGoogle Scholar
  193. 193.
    Corbin JD, Francis SH (1999) Cyclic GMP phosphodiesterase-5: target of sildenafil. J Biol Chem 274:13729–13732PubMedGoogle Scholar
  194. 194.
    Senzaki H, Smith CJ, Juang GJ, Isoda T, Mayer SP, Ohler A, Paolocci N, Tomaselli GF, Hare JM, Kass DA (2001) Cardiac phosphodiesterase 5 (cGMP-specific) modulates beta-adrenergic signaling in vivo and is down-regulated in heart failure. FASEB J 15:1718–1726PubMedGoogle Scholar
  195. 195.
    Kishimoto I, Hamra FK, Garbers DL (2001) Apparent B-type natriuretic peptide selectivity in the kidney due to differential processing. Can J Physiol Pharmacol 79:715–722PubMedGoogle Scholar
  196. 196.
    Zahabi A, Picard S, Fortin N, Reudelhuber TL, Deschepper CF (2003) Expression of constitutively active guanylate cyclase in cardiomyocytes inhibits the hypertrophic effects of isoproterenol and aortic constriction on mouse hearts. J Biol Chem 278:47694–47699PubMedGoogle Scholar
  197. 197.
    Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11:214–222PubMedGoogle Scholar
  198. 198.
    Wang B, Golemis EA, Kruh GD (1997) ArgBP2, a multiple Src homology 3 domain-containing, Arg/Abl-interacting protein, is phosphorylated in v-Abl-transformed cells and localized in stress fibers and cardiocyte Z-disks. J Biol Chem 272:17542–17550PubMedGoogle Scholar
  199. 199.
    Cestra G, Toomre D, Chang S, De Camilli P (2005) The Abl/Arg substrate ArgBP2/nArgBP2 coordinates the function of multiple regulatory mechanisms converging on the actin cytoskeleton. Proc Natl Acad Sci U S A 102:1731–1736PubMedGoogle Scholar
  200. 200.
    Soubeyran P, Barac A, Szymkiewicz I, Dikic I (2003) Cbl–ArgBP2 complex mediates ubiquitination and degradation of c-Abl. Biochem J 370:29–34PubMedGoogle Scholar
  201. 201.
    Ronty M, Taivainen A, Moza M, Kruh GD, Ehler E, Carpen O (2005) Involvement of palladin and alpha-actinin in targeting of the Abl/Arg kinase adaptor ArgBP2 to the actin cytoskeleton. Exp Cell Res 310:88–98PubMedGoogle Scholar
  202. 202.
    Brown JL, Stowers L, Baer M, Trejo J, Coughlin S, Chant J (1996) Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway. Curr Biol 6:598–605PubMedGoogle Scholar
  203. 203.
    Ke Y, Wang L, Pyle WG, de Tombe PP, Solaro RJ (2004) Intracellular localization and functional effects of P21-activated kinase-1 (Pak1) in cardiac myocytes. Circ Res 94:194–200PubMedGoogle Scholar
  204. 204.
    Robertson SP, Johnson JD, Holroyde MJ, Kranias EG, Potter JD, Solaro RJ (1982) The effect of troponin I phosphorylation on the Ca2+-binding properties of the Ca2+-regulatory site of bovine cardiac troponin. J Biol Chem 257:260–263PubMedGoogle Scholar
  205. 205.
    Kentish JC, McCloskey DT, Layland J, Palmer S, Leiden JM, Martin AF, Solaro RJ (2001) Phosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ Res 88:1059–1065PubMedGoogle Scholar
  206. 206.
    Buscemi N, Foster DB, Neverova I, Van Eyk JE (2002) p21-activated kinase increases the calcium sensitivity of rat triton-skinned cardiac muscle fiber bundles via a mechanism potentially involving novel phosphorylation of troponin I. Circ Res 91:509–516PubMedGoogle Scholar
  207. 207.
    Sussman MA, Welch S, Walker A, Klevitsky R, Hewett TE, Price RL, Schaefer E, Yager K (2000) Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J Clin Invest 105:875–886PubMedGoogle Scholar
  208. 208.
    Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708PubMedGoogle Scholar
  209. 209.
    Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW (1997) F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209–219PubMedGoogle Scholar
  210. 210.
    Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, Vidal M, Pagano M (1999) Identification of a family of human F-box proteins. Curr Biol 9:1177–1179PubMedGoogle Scholar
  211. 211.
    Rothermel B, Vega RB, Yang J, Wu H, Bassel-Duby R, Williams RS (2000) A protein encoded within the Down syndrome critical region is enriched in striated muscles and inhibits calcineurin signaling. J Biol Chem 275:8719–8725PubMedGoogle Scholar
  212. 212.
    Coghlan VM, Perrino BA, Howard M, Langeberg LK, Hicks JB, Gallatin WM, Scott JD (1995) Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267:108–111PubMedGoogle Scholar
  213. 213.
    Sun L, Youn HD, Loh C, Stolow M, He W, Liu JO (1998) Cabin 1, a negative regulator for calcineurin signaling in T lymphocytes. Immunity 8:703–711PubMedGoogle Scholar
  214. 214.
    Lai MM, Burnett PE, Wolosker H, Blackshaw S, Snyder SH (1998) Cain, a novel physiologic protein inhibitor of calcineurin. J Biol Chem 273:18325–18331PubMedGoogle Scholar
  215. 215.
    Hill JA, Rothermel B, Yoo KD, Cabuay B, Demetroulis E, Weiss RM, Kutschke W, Bassel-Duby R, Williams RS (2002) Targeted inhibition of calcineurin in pressure-overload cardiac hypertrophy. Preservation of systolic function. J Biol Chem 277:10251–10255PubMedGoogle Scholar
  216. 216.
    Spencer JA, Eliazer S, Ilaria RL Jr, Richardson JA, Olson EN (2000) Regulation of microtubule dynamics and myogenic differentiation by MURF, a striated muscle RING-finger protein. J Cell Biol 150:771–784PubMedGoogle Scholar
  217. 217.
    Joazeiro CA, Weissman AM (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102:549–552PubMedGoogle Scholar
  218. 218.
    Dai KS, Liew CC (2001) A novel human striated muscle RING zinc finger protein, SMRZ, interacts with SMT3b via its RING domain. J Biol Chem 276:23992–23999PubMedGoogle Scholar
  219. 219.
    Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, Trombitas K, Granzier H, Gregorio CC, Sorimachi H, Labeit S (2001) Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 306:717–726PubMedGoogle Scholar
  220. 220.
    McElhinny AS, Perry CN, Witt CC, Labeit S, Gregorio CC (2004) Muscle-specific RING finger-2 (MURF-2) is important for microtubule, intermediate filament and sarcomeric M-line maintenance in striated muscle development. J Cell Sci 117:3175–3188PubMedGoogle Scholar
  221. 221.
    Pizon V, Iakovenko A, Van Der Ven PF, Kelly R, Fatu C, Furst DO, Karsenti E, Gautel M (2002) Transient association of titin and myosin with microtubules in nascent myofibrils directed by the MURF2 RING-finger protein. J Cell Sci 115:4469–4482PubMedGoogle Scholar
  222. 222.
    Kedar V, McDonough H, Arya R, Li HH, Rockman HA, Patterson C (2004) Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci U S A 101:18135–18140PubMedGoogle Scholar
  223. 223.
    Witt SH, Granzier H, Witt CC, Labeit S (2005) MURF-1 and MURF-2 Target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination. J Mol Biol 350:713–722PubMedGoogle Scholar
  224. 224.
    Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801PubMedGoogle Scholar
  225. 225.
    Glading A, Lauffenburger DA, Wells A (2002) Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol 12:46–54PubMedGoogle Scholar
  226. 226.
    Raynaud F, Bonnal C, Fernandez E, Bremaud L, Cerutti M, Lebart MC, Roustan C, Ouali A, Benyamin Y (2003) The calpain 1–alpha-actinin interaction. Resting complex between the calcium-dependent protease and its target in cytoskeleton. Eur J Biochem 270:4662–4670PubMedGoogle Scholar
  227. 227.
    Raynaud F, Fernandez E, Coulis G, Aubry L, Vignon X, Bleimling N, Gautel M, Benyamin Y, Ouali A (2005) Calpain 1–titin interactions concentrate calpain 1 in the Z-band edges and in the N2-line region within the skeletal myofibril. FEBS J 272:2578–2590PubMedGoogle Scholar
  228. 228.
    Delgado EF, Geesink GH, Marchello JA, Goll DE, Koohmaraie M (2001) Properties of myofibril-bound calpain activity in longissimus muscle of callipyge and normal sheep. J Anim Sci 79:2097–2107PubMedGoogle Scholar
  229. 229.
    Taveau M, Bourg N, Sillon G, Roudaut C, Bartoli M, Richard I (2003) Calpain 3 is activated through autolysis within the active site and lyses sarcomeric and sarcolemmal components. Mol Cell Biol 23:9127–9135PubMedGoogle Scholar
  230. 230.
    Baghdiguian S, Martin M, Richard I, Pons F, Astier C, Bourg N, Hay RT, Chemaly R, Halaby G, Loiselet J, Anderson LV, Lopez de Munain A, Fardeau M, Mangeat P, Beckmann JS, Lefranc G (1999) Calpain 3 deficiency is associated with myonuclear apoptosis and profound perturbation of the IkappaB alpha/NF-kappaB pathway in limb-girdle muscular dystrophy type 2A. Nat Med 5:503–511PubMedGoogle Scholar
  231. 231.
    Kramerova I, Kudryashova E, Venkatraman G, Spencer MJ (2005) Calpain 3 participates in sarcomere remodeling by acting upstream of the ubiquitin–proteasome pathway. Hum Mol Genet 14:2125–2134PubMedGoogle Scholar
  232. 232.
    Lane PW (1985) Muscular dystrophy with myositis (mdm). Mouse News Lett 73:18Google Scholar
  233. 233.
    Huebsch KA, Kudryashova E, Wooley CM, Sher RB, Seburn KL, Spencer MJ, Cox GA (2005) Mdm muscular dystrophy: interactions with calpain 3 and a novel functional role for titin’s N2A domain. Hum Mol Genet 14:2801–2811PubMedGoogle Scholar
  234. 234.
    Hackman P, Vihola A, Haravuori H, Marchand S, Sarparanta J, De Seze J, Labeit S, Witt C, Peltonen L, Richard I, Udd B (2002) Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet 71:492–500PubMedGoogle Scholar
  235. 235.
    Pardo JV, Siliciano JD, Craig SW (1983) A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma. Proc Natl Acad Sci U S A 80:1008–1012PubMedGoogle Scholar
  236. 236.
    Porter GA, Dmytrenko GM, Winkelmann JC, Bloch RJ (1992) Dystrophin colocalizes with beta-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle. J Cell Biol 117:997–1005PubMedGoogle Scholar
  237. 237.
    Patel TJ, Lieber RL (1997) Force transmission in skeletal muscle: from actomyosin to external tendons. Exerc Sport Sci Rev 25:321–363PubMedGoogle Scholar
  238. 238.
    Dalakas MC, Park KY, Semino-Mora C, Lee HS, Sivakumar K, Goldfarb LG (2000) Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med 342:770–780PubMedGoogle Scholar
  239. 239.
    Li D, Tapscoft T, Gonzalez O, Burch PE, Quinones MA, Zoghbi WA, Hill R, Bachinski LL, Mann DL, Roberts R (1999) Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 100:461–464PubMedGoogle Scholar
  240. 240.
    Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928PubMedGoogle Scholar
  241. 241.
    Lim LE, Campbell KP (1998) The sarcoglycan complex in limb-girdle muscular dystrophy. Curr Opin Neurol 11:443–452PubMedGoogle Scholar
  242. 242.
    Lazarides E, Hubbard BD (1976) Immunological characterization of the subunit of the 100 A filaments from muscle cells. Proc Natl Acad Sci U S A 73:4344–4348PubMedGoogle Scholar
  243. 243.
    Small JV, Sobieszek A (1977) Studies on the function and composition of the 10-NM(100-A) filaments of vertebrate smooth muscle. J Cell Sci 23:243–268PubMedGoogle Scholar
  244. 244.
    Bang ML, Gregorio C, Labeit S (2002) Molecular dissection of the interaction of desmin with the C-terminal region of nebulin. J Struct Biol 137:119–127PubMedGoogle Scholar
  245. 245.
    Langley RC Jr, Cohen CM (1987) Cell type-specific association between two types of spectrin and two types of intermediate filaments. Cell Motil Cytoskeleton 8:165–173PubMedGoogle Scholar
  246. 246.
    Georgatos SD, Weber K, Geisler N, Blobel G (1987) Binding of two desmin derivatives to the plasma membrane and the nuclear envelope of avian erythrocytes: evidence for a conserved site-specificity in intermediate filament–membrane interactions. Proc Natl Acad Sci U S A 84:6780–6784PubMedGoogle Scholar
  247. 247.
    Granger BL, Lazarides E (1980) Synemin: a new high molecular weight protein associated with desmin and vimentin filaments in muscle. Cell 22:727–738PubMedGoogle Scholar
  248. 248.
    Newey SE, Howman EV, Ponting CP, Benson MA, Nawrotzki R, Loh NY, Davies KE, Blake DJ (2001) Syncoilin, a novel member of the intermediate filament superfamily that interacts with alpha-dystrobrevin in skeletal muscle. J Biol Chem 276:6645–6655PubMedGoogle Scholar
  249. 249.
    Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y (1996) Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 134:1255–1270PubMedGoogle Scholar
  250. 250.
    Li Z, Mericskay M, Agbulut O, Butler-Browne G, Carlsson L, Thornell LE, Babinet C, Paulin D (1997) Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. J Cell Biol 139:129–144PubMedGoogle Scholar
  251. 251.
    Milner DJ, Taffet GE, Wang X, Pham T, Tamura T, Hartley C, Gerdes AM, Capetanaki Y (1999) The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compromised systolic function. J Mol Cell Cardiol 31:2063–2076PubMedGoogle Scholar
  252. 252.
    Weisleder N, Taffet GE, Capetanaki Y (2004) Bcl-2 overexpression corrects mitochondrial defects and ameliorates inherited desmin null cardiomyopathy. Proc Natl Acad Sci U S A 101:769–774PubMedGoogle Scholar
  253. 253.
    Shah SB, Davis J, Weisleder N, Kostavassili I, McCulloch AD, Ralston E, Capetanaki Y, Lieber RL (2004) Structural and functional roles of desmin in mouse skeletal muscle during passive deformation. Biophys J 86:2993–3008PubMedCrossRefGoogle Scholar
  254. 254.
    Goldfarb LG, Vicart P, Goebel HH, Dalakas MC (2004) Desmin myopathy. Brain 127:723–734PubMedGoogle Scholar
  255. 255.
    Goldfarb LG, Park KY, Cervenakova L, Gorokhova S, Lee HS, Vasconcelos O, Nagle JW, Semino-Mora C, Sivakumar K, Dalakas MC (1998) Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nat Genet 19:402–403PubMedGoogle Scholar
  256. 256.
    Munoz-Marmol AM, Strasser G, Isamat M, Coulombe PA, Yang Y, Roca X, Vela E, Mate JL, Coll J, Fernandez-Figueras MT, Navas-Palacios JJ, Ariza A, Fuchs E (1998) A dysfunctional desmin mutation in a patient with severe generalized myopathy. Proc Natl Acad Sci U S A 95:11312–11317PubMedGoogle Scholar
  257. 257.
    Fardeau M, Vicart P, Caron A, Chateau D, Chevallay M, Collin H, Chapon F, Duboc D, Eymard B, Tome FM, Dupret JM, Paulin D, Guicheney P (2000) Familial myopathy with desmin storage seen as a granulo-filamentar, electron-dense material with mutation of the alphaB-cristallin gene. Rev Neurol (Paris) 156:497–504Google Scholar
  258. 258.
    Sanbe A, Osinska H, Saffitz JE, Glabe CG, Kayed R, Maloyan A, Robbins J (2004) Desmin-related cardiomyopathy in transgenic mice: a cardiac amyloidosis. Proc Natl Acad Sci U S A 101:10132–10136PubMedGoogle Scholar
  259. 259.
    Ross RS, Borg TK (2001) Integrins and the myocardium. Circ Res 88:1112–1119PubMedGoogle Scholar
  260. 260.
    Ross RS (2004) Molecular and mechanical synergy: cross-talk between integrins and growth factor receptors. Cardiovasc Res 63:381–390PubMedGoogle Scholar
  261. 261.
    Shattil SJ, Kashiwagi H, Pampori N (1998) Integrin signaling: the platelet paradigm. Blood 91:2645–2657PubMedGoogle Scholar
  262. 262.
    Schaller MD, Otey CA, Hildebrand JD, Parsons JT (1995) Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. J Cell Biol 130:1181–1187PubMedGoogle Scholar
  263. 263.
    Coppolino MG, Woodside MJ, Demaurex N, Grinstein S, St-Arnaud R, Dedhar S (1997) Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 386:843–847PubMedGoogle Scholar
  264. 264.
    Rojiani MV, Finlay BB, Gray V, Dedhar S (1991) In vitro interaction of a polypeptide homologous to human Ro/SS-A antigen (calreticulin) with a highly conserved amino acid sequence in the cytoplasmic domain of integrin alpha subunits. Biochemistry 30:9859–9866PubMedGoogle Scholar
  265. 265.
    Brancaccio M, Guazzone S, Menini N, Sibona E, Hirsch E, De Andrea M, Rocchi M, Altruda F, Tarone G, Silengo L (1999) Melusin is a new muscle-specific interactor for beta(1) integrin cytoplasmic domain. J Biol Chem 274:29282–29288PubMedGoogle Scholar
  266. 266.
    Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, Coppolino MG, Radeva G, Filmus J, Bell JC, Dedhar S (1996) Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 379:91–96PubMedGoogle Scholar
  267. 267.
    Yamaji S, Suzuki A, Sugiyama Y, Koide Y, Yoshida M, Kanamori H, Mohri H, Ohno S, Ishigatsubo Y (2001) A novel integrin-linked kinase-binding protein, affixin, is involved in the early stage of cell–substrate interaction. J Cell Biol 153:1251–1264PubMedGoogle Scholar
  268. 268.
    Yamaji S, Suzuki A, Kanamori H, Mishima W, Yoshimi R, Takasaki H, Takabayashi M, Fujimaki K, Fujisawa S, Ohno S, Ishigatsubo Y (2004) Affixin interacts with alpha-actinin and mediates integrin signaling for reorganization of F-actin induced by initial cell–substrate interaction. J Cell Biol 165:539–551PubMedGoogle Scholar
  269. 269.
    Heidkamp MC, Bayer AL, Scully BT, Eble DM, Samarel AM (2003) Activation of focal adhesion kinase by protein kinase C epsilon in neonatal rat ventricular myocytes. Am J Physiol Heart Circ Physiol 285:H1684–H1696PubMedGoogle Scholar
  270. 270.
    Aikawa R, Nagai T, Kudoh S, Zou Y, Tanaka M, Tamura M, Akazawa H, Takano H, Nagai R, Komuro I (2002) Integrins play a critical role in mechanical stress-induced p38 MAPK activation. Hypertension 39:233–238PubMedGoogle Scholar
  271. 271.
    Zhang S, Weinheimer C, Courtois M, Kovacs A, Zhang CE, Cheng AM, Wang Y, Muslin AJ (2003) The role of the Grb2–p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis. J Clin Invest 111:833–841PubMedGoogle Scholar
  272. 272.
    Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT (1992) pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci U S A 89:5192–5196PubMedGoogle Scholar
  273. 273.
    Hanks SK, Calalb MB, Harper MC, Patel SK (1992) Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc Natl Acad Sci U S A 89:8487–8491PubMedGoogle Scholar
  274. 274.
    Andre E, Becker-Andre M (1993) Expression of an N-terminally truncated form of human focal adhesion kinase in brain. Biochem Biophys Res Commun 190:140–147PubMedGoogle Scholar
  275. 275.
    Parsons JT (2003) Focal adhesion kinase: the first ten years. J Cell Sci 116:1409–1416PubMedGoogle Scholar
  276. 276.
    Seko Y, Takahashi N, Tobe K, Kadowaki T, Yazaki Y (1999) Pulsatile stretch activates mitogen-activated protein kinase (MAPK) family members and focal adhesion kinase (p125(FAK)) in cultured rat cardiac myocytes. Biochem Biophys Res Commun 259:8–14PubMedGoogle Scholar
  277. 277.
    Laser M, Willey CD, Jiang W, Cooper Gt, Menick DR, Zile MR, Kuppuswamy D (2000) Integrin activation and focal complex formation in cardiac hypertrophy. J Biol Chem 275:35624–35630PubMedGoogle Scholar
  278. 278.
    Franchini KG, Torsoni AS, Soares PH, Saad MJ (2000) Early activation of the multicomponent signaling complex associated with focal adhesion kinase induced by pressure overload in the rat heart. Circ Res 87:558–565PubMedGoogle Scholar
  279. 279.
    Fonseca PM, Inoue RY, Kobarg CB, Crosara-Alberto DP, Kobarg J, Franchini KG (2005) Targeting to C-terminal myosin heavy chain may explain mechanotransduction involving focal adhesion kinase in cardiac myocytes. Circ Res 96:73–81PubMedGoogle Scholar
  280. 280.
    Torsoni AS, Marin TM, Velloso LA, Franchini KG (2005) Rhoa/Rock signaling is critical to FAK activation by cyclic stretch in cardiac myocytes. Am J Physiol Heart Circ Physiol 289:H1488–H1496PubMedGoogle Scholar
  281. 281.
    Torsoni AS, Fonseca PM, Crosara-Alberto DP, Franchini KG (2003) Early activation of p160ROCK by pressure overload in rat heart. Am J Physiol Cell Physiol 284:C1411–C1419PubMedGoogle Scholar
  282. 282.
    Mansour H, de Tombe PP, Samarel AM, Russell B (2004) Restoration of resting sarcomere length after uniaxial static strain is regulated by protein kinase Cepsilon and focal adhesion kinase. Circ Res 94:642–649PubMedGoogle Scholar
  283. 283.
    Antos CL, McKinsey TA, Frey N, Kutschke W, McAnally J, Shelton JM, Richardson JA, Hill JA, Olson EN (2002) Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A 99:907–912PubMedGoogle Scholar
  284. 284.
    Morisco C, Seta K, Hardt SE, Lee Y, Vatner SF, Sadoshima J (2001) Glycogen synthase kinase 3beta regulates GATA4 in cardiac myocytes. J Biol Chem 276:28586–28597PubMedGoogle Scholar
  285. 285.
    Haq S, Choukroun G, Kang ZB, Ranu H, Matsui T, Rosenzweig A, Molkentin JD, Alessandrini A, Woodgett J, Hajjar R, Michael A, Force T (2000) Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol 151:117–130PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Derk Frank
    • 1
  • Christian Kuhn
    • 1
  • Hugo A. Katus
    • 1
  • Norbert Frey
    • 1
    • 2
  1. 1.Department of Internal Medicine IIIUniversity of HeidelbergHeidelbergGermany
  2. 2.Department of CardiologyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations