Journal of Molecular Medicine

, Volume 84, Issue 6, pp 484–490 | Cite as

Localization of a novel autosomal recessive nonsyndromic hearing impairment locus DFNB65 to chromosome 20q13.2–q13.32

  • Aamira Tariq
  • Regie Lyn P. Santos
  • Mohammad Nasim Khan
  • Kwanghyuk Lee
  • Muhammad Jawad Hassan
  • Wasim Ahmad
  • Suzanne M. LealEmail author
Original Article


Autosomal recessive nonsyndromic hearing impairment (ARNSHI) is the most frequent form of prelingual hereditary hearing loss in humans. Between 75 and 80% of all nonsyndromic deafness is inherited in an autosomal recessive pattern. Using linkage analysis, we have mapped a novel gene responsible for this form of nonsyndromic hearing impairment, DFNB65, in a consanguineous family from the Azad Jammu and Kashmir regions, which border Pakistan and India. A maximum multipoint LOD score of 3.3 was obtained at marker D20S840. The three-unit support interval is contained between markers D20S902 and D20S430, while the region of homozygosity is flanked by markers D20S480 and D20S430. The novel locus maps to a 10.5-cM region on chromosome 20q13.2–q13.32 and corresponds to a physical map distance of 4.3 Mb. DFNB65 represents the first ARNSHI locus to map to chromosome 20.


Autosomal recessive nonsyndromic hearing impairment DFNB65 Pakistan 20q13.2–q13.32 



hearing impairment


nonsyndromic HI


autosomal recessive NSHI



We wish to thank the family members for their invaluable participation and cooperation. This research was funded by the National Institutes of Health—National Institute of Deafness and other Communication Disorders grant R01-DC03594-06A1 and the Higher Education Commission, Islamabad, Pakistan. Genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, Contract Number N01-HG-65403.


  1. 1.
    Parving A (1983) Epidemiology of hearing loss and aetiological diagnosis of hearing impairment in childhood. Int J Pediatr Otorhinolaryngol 7:29–38CrossRefGoogle Scholar
  2. 2.
    Morton NE (1991) Genetic epidemiology of hearing impairment. Ann NY Acad Sci 630:16–31PubMedCrossRefGoogle Scholar
  3. 3.
    Van Camp G, Smith RJH (2005) Hereditary hearing loss homepage.
  4. 4.
    Grimberg J, Nawoschik S, Bellusico L, McKee R, Trucks A, Eisenberg A (1989) A simple and efficient non-organic procedure for the isolation of genomic DNA from blood. Nucleic Acids Res 17:83–90Google Scholar
  5. 5.
    International Human Genome Sequence Consortium (2001) Initial sequence and analysis of the human genome. Nature 409:860–921. July 2003 reference sequence as viewed in: Genome Bioinformatics Group of UC Santa Cruz. UCSC Genome Browser. Google Scholar
  6. 6.
    Kong X, Murphy K, Raj T, He C, White PS, Matise TC (2004) A combined linkage-physical map of the human genome. Am J Hum Genet 75:1143–1148CrossRefPubMedGoogle Scholar
  7. 7.
    Connell JR, Weeks DE (1998) PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 63:259–266CrossRefPubMedGoogle Scholar
  8. 8.
    Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101PubMedCrossRefGoogle Scholar
  9. 9.
    Weeks DE, Sobel E, O’Connell JR, Lange K (1995) Computer programs for multilocus haplotyping of general pedigrees. Am J Hum Genet 56:1506–1507PubMedGoogle Scholar
  10. 10.
    Sobel E, Lange K (1996) Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 58:1323–1337PubMedGoogle Scholar
  11. 11.
    Cottingham Jr RW, Indury RM, Schaffer AA (1993) Faster sequential genetic linkage computation. Am J Hum Genet 53:252–263PubMedGoogle Scholar
  12. 12.
    Gudbjartsson DF, Jonasson K, Frigge ML, Kong A (2002) Allegro, a new computer program for multipoint linkage analysis. Nat Genet 25:12–13CrossRefGoogle Scholar
  13. 13.
    Freimer NB, Sandkuijl LA, Blower S (1993) Incorrect specification of marker allele frequencies: effects on linkage analysis. Am J Hum Genet 52:1102–1110PubMedGoogle Scholar
  14. 14.
    Broman K, Murray JC, Scheffield VC, White RL, Weber JL (1998) Comprehensive human genetics maps: individual and sex specific variation in recombination. Am J Hum Genet 63:861–869CrossRefPubMedGoogle Scholar
  15. 15.
    Kasuga H, Hosogane N, Matsuoka K, Mori I, Sakura Y, Shimakawa K, Shinki T, Suda T, Taketomi S (2002) Characterization of transgenic rats constitutively expressing vitamin D-24-hydroxylase gene. Biochem Biophys Res Commun 297:1332–1338CrossRefPubMedGoogle Scholar
  16. 16.
    Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan SM, Yu H, Rosenblum DI, Vongs A, Feng Y, Cao L, Metzger JM, Strack AM, Camacho RE, Mellin TN, Nunes CN, Min W, Fisher J, Gopal-Truter S, MacIntyre DE, Chen HY, Van der Ploeg LH (2000) Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 26:97–102CrossRefPubMedGoogle Scholar
  17. 17.
    Werling U, Schorle H (2002) Transcription factor gene AP-2 gamma essential for early murine development. Mol Cell Biol 22:3149–3156CrossRefPubMedGoogle Scholar
  18. 18.
    Oh SH, Johnson R, Wu DK (1996) Differential expression of bone morphogenetic proteins in the developing vestibular and auditory sensory organs. J Neurosci 16:6463–6475PubMedGoogle Scholar
  19. 19.
    The Hearing Research Group at Brigham & Women’s Hospital (2002) Human cochlear cDNA library and EST database.
  20. 20.
    Holme RH, Bussoli TJ, Steel KP (2002) Table of gene expression in the developing ear.

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Aamira Tariq
    • 1
  • Regie Lyn P. Santos
    • 2
  • Mohammad Nasim Khan
    • 1
  • Kwanghyuk Lee
    • 2
  • Muhammad Jawad Hassan
    • 1
  • Wasim Ahmad
    • 1
  • Suzanne M. Leal
    • 2
    Email author
  1. 1.Department of Biological SciencesQuaid-I-Azam UniversityIslamabadPakistan
  2. 2.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA

Personalised recommendations