Journal of Molecular Medicine

, Volume 84, Issue 2, pp 112–121

Human genetics of adiponectin in the metabolic syndrome



Adiponectin, an adipose-derived plasma protein, has been well established to be an important biomarker for metabolic syndrome and its complications after exhausted studies in humans. Animal and cell culture experiments also support most claims from human observations of its roles in the metabolic syndrome. Reproducible results of human genetic studies of diverse ethnic origin and by different investigators may provide the evidence for its causative roles in the pathogenesis of the metabolic syndrome and further insight into the genetic constitutions of the metabolic syndrome. Some of the common polymorphisms in the promoter region, exon and intron 2, and the rare nonsynonymous mutations in exon 3 of the human adiponectin gene were repeatedly shown in many studies from many different ethnic populations to associate with the phenotypes related to body weight, glucose metabolism, insulin sensitivity, and risk of type 2 diabetes mellitus and coronary artery disease. The association of adiponectin genetic variations with dyslipidemia and blood pressure was less explored. The common polymorphisms and rare mutations of the human adiponectin gene itself were demonstrated to associate with differential expression of adiponectin at the plasma protein level and mRNA level in adipose tissue. The PPARγ2 Pro12Ala variants were also shown to influence insulin sensitivity in interaction with adiponectin genotype or to influence plasma adiponectin levels. However, the results were not consistent. Three genome-wide scans for the loci that regulate plasma adiponectin concentration suggest further exploration on chromosomes 5, 9, 14, 15, and 18 is required. These human genetic studies on adiponectin and the metabolic syndrome strongly suggest that adiponectin is one of the causative factors in its pathogenesis and provide significant insights into the genetic makeup of the metabolic syndrome. Extension from these studies may accelerate the discovery of new molecular targets for future therapeutic interventions.


Adiponectin Genetic variants Metabolic syndrome Genetics Pharmacogenetics 



Metabolic syndrome


Human immunodeficiency virus


Coronary artery disease


Polycystic ovary syndrome


Type 2 diabetes mellitus


Impaired glucose tolerance


Area under curve


Oral glucose tolerance test


Peroxisome proliferator-activated receptor gamma


Homeostasis model assessment


High-density lipoprotein


  1. 1.
    Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556PubMedCrossRefGoogle Scholar
  2. 2.
    Matsuzawa Y, Funahashi T, Nakamura T (1999) Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive substances. Ann N Y Acad Sci 892:146–154PubMedCrossRefGoogle Scholar
  3. 3.
    Berg AH, Combs TP, Scherer PE (2002) ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab 13:84–89PubMedCrossRefGoogle Scholar
  4. 4.
    Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270:26746–26749PubMedCrossRefGoogle Scholar
  5. 5.
    Nakano Y, Tobe T, Choi-Miura NH, Mazda T, Tomita M (1996) Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem (Tokyo) 120:803–812Google Scholar
  6. 6.
    Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K (1996) cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun 221:286–289PubMedCrossRefGoogle Scholar
  7. 7.
    Hu E, Liang P, Spiegelman BM (1996) AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 271:10697–10703PubMedCrossRefGoogle Scholar
  8. 8.
    Matsuzawa Y, Funahashi T, Kihara S, Shimomura I (2004) Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol 24:29–33PubMedCrossRefGoogle Scholar
  9. 9.
    Yamauchi T, Kamon J, Waki H et al (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946PubMedCrossRefGoogle Scholar
  10. 10.
    Fruebis J, Tsao TS, Javorschi S et al (2001) Proteolytic cleavage product of 30–kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A 98:2005–2010PubMedCrossRefGoogle Scholar
  11. 11.
    Combs TP, Berg AH, Obici S, Scherer PE, Rossetti L (2001) Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest 108:1875–1881PubMedCrossRefGoogle Scholar
  12. 12.
    Berg AH, Combs TP, Du X, Brownlee M, Scherer PE (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7:947–953PubMedCrossRefGoogle Scholar
  13. 13.
    Maeda N, Shimomura I, Kishida K et al (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8:731–737PubMedCrossRefGoogle Scholar
  14. 14.
    Yamauchi T, Kamon J, Minokoshi Y et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295PubMedCrossRefGoogle Scholar
  15. 15.
    Okamoto Y, Kihara S, Ouchi N et al (2002) Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 106:2767–2770PubMedCrossRefGoogle Scholar
  16. 16.
    Kubota N, Terauchi Y, Yamauchi T et al (2002) Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 277:25863–25866PubMedCrossRefGoogle Scholar
  17. 17.
    Matsuda M, Shimomura I, Sata M et al (2002) Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J Biol Chem 277:37487–37491PubMedCrossRefGoogle Scholar
  18. 18.
    Yamauchi T, Kamon J, Waki H et al (2003) Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem 278:2461–2468PubMedCrossRefGoogle Scholar
  19. 19.
    Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365:1415–1428PubMedCrossRefGoogle Scholar
  20. 20.
    Arita Y, Kihara S, Ouchi N et al (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257:79–83PubMedCrossRefGoogle Scholar
  21. 21.
    Yang WS, Lee WJ, Funahashi T et al (2002) Plasma adiponectin levels in overweight and obese Asians. Obes Res 10:1104–1110PubMedCrossRefGoogle Scholar
  22. 22.
    Hotta K, Funahashi T, Arita Y et al (2000) Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 20:1595–1599PubMedGoogle Scholar
  23. 23.
    Yang WS, Lee WJ, Funahashi T et al (2001) Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 86:3815–3819PubMedCrossRefGoogle Scholar
  24. 24.
    Weyer C, Funahashi T, Tanaka S et al (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86:1930–1935PubMedCrossRefGoogle Scholar
  25. 25.
    Lindsay RS, Funahashi T, Hanson RL et al (2002) Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 360:57–58PubMedCrossRefGoogle Scholar
  26. 26.
    Spranger J, Kroke A, Mohlig M et al (2003) Adiponectin and protection against type 2 diabetes mellitus. Lancet 361:226–228PubMedCrossRefGoogle Scholar
  27. 27.
    Snehalatha C, Mukesh B, Simon M, Viswanathan V, Haffner SM, Ramachandran A (2003) Plasma adiponectin is an independent predictor of type 2 diabetes in Asian Indians. Diabetes Care 26:3226–3229PubMedCrossRefGoogle Scholar
  28. 28.
    Daimon M, Oizumi T, Saitoh T et al (2003) Decreased serum levels of adiponectin are a risk factor for the progression to type 2 diabetes in the Japanese population: the Funagata study. Diabetes Care 26:2015–2020PubMedCrossRefGoogle Scholar
  29. 29.
    Maeda N, Takahashi M, Funahashi T et al (2001) PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50:2094–2099PubMedCrossRefGoogle Scholar
  30. 30.
    Yang WS, Jeng CY, Wu TJ et al (2002) Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care 25:376–380PubMedCrossRefGoogle Scholar
  31. 31.
    Tsunekawa T, Hayashi T, Suzuki Y et al (2003) Plasma adiponectin plays an important role in improving insulin resistance with glimepiride in elderly type 2 diabetic subjects. Diabetes Care 26:285–289PubMedCrossRefGoogle Scholar
  32. 32.
    Tiikkainen M, Hakkinen AM, Korsheninnikova E, Nyman T, Makimattila S, Yki-Jarvinen H (2004) Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes. Diabetes 53:2169–2176PubMedCrossRefGoogle Scholar
  33. 33.
    Matsubara M, Maruoka S, Katayose S (2002) Decreased plasma adiponectin concentrations in women with dyslipidemia. J Clin Endocrinol Metab 87:2764–2769PubMedCrossRefGoogle Scholar
  34. 34.
    Koh KK, Quon MJ, Han SH et al (2004) Additive beneficial effects of losartan combined with simvastatin in the treatment of hypercholesterolemic, hypertensive patients. Circulation 110:3687–3692PubMedCrossRefGoogle Scholar
  35. 35.
    Kazumi T, Kawaguchi A, Sakai K, Hirano T, Yoshino G (2002) Young men with high-normal blood pressure have lower serum adiponectin, smaller LDL size, and higher elevated heart rate than those with optimal blood pressure. Diabetes Care 25:971–976PubMedCrossRefGoogle Scholar
  36. 36.
    Huang KC, Chen CL, Chuang LM, Ho SR, Tai TY, Yang WS (2003) Plasma adiponectin levels and blood pressures in nondiabetic adolescent females. J Clin Endocrinol Metab 88:4130–4134PubMedCrossRefGoogle Scholar
  37. 37.
    Furuhashi M, Ura N, Higashiura K et al (2003) Blockade of the renin–angiotensin system increases adiponectin concentrations in patients with essential hypertension. Hypertension 42:76–81PubMedCrossRefGoogle Scholar
  38. 38.
    Schupp M, Janke J, Clasen R, Unger T, Kintscher U (2004) Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma activity. Circulation 109:2054–2057PubMedCrossRefGoogle Scholar
  39. 39.
    Benson SC, Pershadsingh HA, Ho CI et al (2004) Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension 43:993–1002PubMedCrossRefGoogle Scholar
  40. 40.
    Clasen R, Schupp M, Foryst-Ludwig A et al (2005) PPAR{gamma}-activating angiotensin type-1 receptor blockers induce adiponectin. Hypertension 46:137–143PubMedCrossRefGoogle Scholar
  41. 41.
    Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–1607PubMedCrossRefGoogle Scholar
  42. 42.
    Moller DE, Kaufman KD (2005) Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med 56:45–62PubMedCrossRefGoogle Scholar
  43. 43.
    Panidis D, Kourtis A, Farmakiotis D, Mouslech T, Rousso D, Koliakos G (2003) Serum adiponectin levels in women with polycystic ovary syndrome. Hum Reprod 18:1790–1796PubMedCrossRefGoogle Scholar
  44. 44.
    Haque WA, Shimomura I, Matsuzawa Y, Garg A (2002) Serum adiponectin and leptin levels in patients with lipodystrophies. J Clin Endocrinol Metab 87:2395PubMedCrossRefGoogle Scholar
  45. 45.
    Yokoyama H, Hirose H, Ohgo H, Saito I (2004) Inverse association between serum adiponectin level and transaminase activities in Japanese male workers. J Hepatol 41:19–24PubMedCrossRefGoogle Scholar
  46. 46.
    Mynarcik DC, Combs T, McNurlan MA, Scherer PE, Komaroff E, Gelato MC (2002) Adiponectin and leptin levels in HIV-infected subjects with insulin resistance and body fat redistribution. J Acquir Immune Defic Syndr 31:514–520PubMedGoogle Scholar
  47. 47.
    Lakka HM, Laaksonen DE, Lakka TA et al (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288:2709–1276PubMedCrossRefGoogle Scholar
  48. 48.
    Marroquin OC, Kip KE, Kelley DE et al (2004) Metabolic syndrome modifies the cardiovascular risk associated with angiographic coronary artery disease in women: a report from the Women’s Ischemia Syndrome Evaluation. Circulation 109:714–721PubMedCrossRefGoogle Scholar
  49. 49.
    Ford ES (2004) The metabolic syndrome and mortality from cardiovascular disease and all-causes: findings from the National Health and Nutrition Examination Survey II Mortality Study. Atherosclerosis 173:309–314PubMedCrossRefGoogle Scholar
  50. 50.
    Hu G, Qiao Q, Tuomilehto J, Balkau B, Borch-Johnsen K, Pyorala K (2004) Prevalence of the metabolic syndrome and its relation to all-cause and cardiovascular mortality in nondiabetic European men and women. Arch Intern Med 164:1066–1076PubMedCrossRefGoogle Scholar
  51. 51.
    Ouchi N, Kihara S, Arita Y et al (1999) Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100:2473–2476PubMedGoogle Scholar
  52. 52.
    Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB (2004) Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 291:1730–1737PubMedCrossRefGoogle Scholar
  53. 53.
    Zoccali C, Mallamaci F, Tripepi G et al (2002) Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J Am Soc Nephrol 13:134–141PubMedCrossRefGoogle Scholar
  54. 54.
    Costacou T, Zgibor JC, Evans RW et al (2005) The prospective association between adiponectin and coronary artery disease among individuals with type 1 diabetes. The Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia 48:41–48PubMedCrossRefGoogle Scholar
  55. 55.
    Schulze MB, Shai I, Rimm EB, Li T, Rifai N, Hu FB (2005) Adiponectin and future coronary heart disease events among men with type 2 diabetes. Diabetes 54:534–539PubMedCrossRefGoogle Scholar
  56. 56.
    Funahashi T, Nakamura T, Shimomura I et al (1999) Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. Intern Med 38:202–206PubMedCrossRefGoogle Scholar
  57. 57.
    Ouchi N, Kihara S, Arita Y et al (2001) Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 103:1057–1063PubMedGoogle Scholar
  58. 58.
    Arita Y, Kihara S, Ouchi N et al (2002) Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell. Circulation 105:2893–2898PubMedCrossRefGoogle Scholar
  59. 59.
    Takahashi M, Arita Y, Yamagata K et al (2000) Genomic structure and mutations in adipose-specific gene, adiponectin. Int J Obes Relat Metab Disord 24:861–868PubMedCrossRefGoogle Scholar
  60. 60.
    Schaffler A, Barth N, Palitzsch KD, Drobnik W, Scholmerich J, Schmitz G (2000) Mutation analysis of the human adipocyte-specific apM-1 gene. Eur J Clin Invest 30:879–887PubMedCrossRefGoogle Scholar
  61. 61.
    Hara K, Boutin P, Mori Y et al (2002) Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes 51:536–540PubMedCrossRefGoogle Scholar
  62. 62.
    Kondo H, Shimomura I, Matsukawa Y et al (2002) Association of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome. Diabetes 51:2325–2328PubMedCrossRefGoogle Scholar
  63. 63.
    Ukkola O, Ravussin E, Jacobson P, Sjostrom L, Bouchard C (2003) Mutations in the adiponectin gene in lean and obese subjects from the Swedish obese subjects cohort. Metabolism 52:881–884PubMedCrossRefGoogle Scholar
  64. 64.
    Ohashi K, Ouchi N, Kihara S et al (2004) Adiponectin I164T mutation is associated with the metabolic syndrome and coronary artery disease. J Am Coll Cardiol 43:1195–1200PubMedCrossRefGoogle Scholar
  65. 65.
    Stumvoll M, Tschritter O, Fritsche A et al (2002) Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes. Diabetes 51:37–41PubMedCrossRefGoogle Scholar
  66. 66.
    Yang WS, Tsou PL, Lee WJ et al (2003) Allele-specific differential expression of a common adiponectin gene polymorphism related to obesity. J Mol Med 81:428–434PubMedCrossRefGoogle Scholar
  67. 67.
    Fumeron F, Aubert R, Siddiq A et al (2004) Adiponectin gene polymorphisms and adiponectin levels are independently associated with the development of hyperglycemia during a 3-year period: the epidemiologic data on the insulin resistance syndrome prospective study. Diabetes 53:1150–1157PubMedCrossRefGoogle Scholar
  68. 68.
    Zacharova J, Chiasson JL, Laakso M (2005) The common polymorphisms (single nucleotide polymorphism [SNP]+45 and SNP+276) of the adiponectin gene predict the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM Trial. Diabetes 54:893–899PubMedCrossRefGoogle Scholar
  69. 69.
    Menzaghi C, Ercolino T, Di Paola R et al (2002) A haplotype at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome. Diabetes 51:2306–2312PubMedCrossRefGoogle Scholar
  70. 70.
    Filippi E, Sentinelli F, Trischitta V et al (2004) Association of the human adiponectin gene and insulin resistance. Eur J Hum Genet 12:199–205PubMedCrossRefGoogle Scholar
  71. 71.
    Xita N, Georgiou I, Chatzikyriakidou A et al (2005) Effect of adiponectin gene polymorphisms on circulating adiponectin and insulin resistance indexes in women with polycystic ovary syndrome. Clin Chem 51:416–423PubMedCrossRefGoogle Scholar
  72. 72.
    Gu HF, Abulaiti A, Ostenson CG et al (2004) Single nucleotide polymorphisms in the proximal promoter region of the adiponectin (APM1) gene are associated with type 2 diabetes in Swedish Caucasians. Diabetes 53 (Suppl 1):S31–S35PubMedCrossRefGoogle Scholar
  73. 73.
    Kang ES, Park SY, Kim HJ et al (2005) The influence of adiponectin gene polymorphism on the rosiglitazone response in patients with type 2 diabetes. Diabetes Care 28:1139–1144PubMedCrossRefGoogle Scholar
  74. 74.
    Vasseur F, Helbecque N, Dina C et al (2002) Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Hum Mol Genet 11:2607–2614PubMedCrossRefGoogle Scholar
  75. 75.
    Populaire C, Mori Y, Dina C et al (2003) Does the −11377 promoter variant of APM1 gene contribute to the genetic risk for type 2 diabetes mellitus in Japanese families? Diabetologia 46:443–445PubMedGoogle Scholar
  76. 76.
    Gibson F, Froguel P (2004) Genetics of the APM1 locus and its contribution to type 2 diabetes susceptibility in French Caucasians. Diabetes 53:2977–2983PubMedCrossRefGoogle Scholar
  77. 77.
    Hu FB, Doria A, Li T et al (2004) Genetic variation at the adiponectin locus and risk of type 2 diabetes in women. Diabetes 53:209–213PubMedCrossRefGoogle Scholar
  78. 78.
    Vozarova de Courten B, Hanson RL, Funahashi T, et al (2005) Common polymorphisms in the adiponectin gene ACDC are not associated with diabetes in Pima Indians. Diabetes 54:284–289CrossRefGoogle Scholar
  79. 79.
    Yang WS, Hsiung CA, Ho LT et al (2003) Genetic epistasis of adiponectin and PPARgamma2 genotypes in modulation of insulin sensitivity: a family-based association study. Diabetologia 46:977–983PubMedCrossRefGoogle Scholar
  80. 80.
    Bacci S, Menzaghi C, Ercolino T et al (2004) The +276 G/T single nucleotide polymorphism of the adiponectin gene is associated with coronary artery disease in type 2 diabetic patients. Diabetes Care 27:2015–2020PubMedCrossRefGoogle Scholar
  81. 81.
    Filippi E, Sentinelli F, Romeo S et al (2005) The adiponectin gene SNP+276G>T associates with early-onset coronary artery disease and with lower levels of adiponectin in younger coronary artery disease patients (age</=50 years). J Mol Med 83(9):711–719PubMedCrossRefGoogle Scholar
  82. 82.
    Lacquemant C, Froguel P, Lobbens S, Izzo P, Dina C, Ruiz J (2004) The adiponectin gene SNP+45 is associated with coronary artery disease in type 2 (non-insulin-dependent) diabetes mellitus. Diabet Med 21:776–781PubMedCrossRefGoogle Scholar
  83. 83.
    Yoshioka K, Yoshida T, Takakura Y et al (2004) Adiponectin gene polymorphism (G276T) and diabetic retinopathy in Japanese patients with type 2 diabetes. Diabet Med 21:1158–1159PubMedCrossRefGoogle Scholar
  84. 84.
    Yoshioka K, Yoshida T, Umekawa T et al (2004) Adiponectin gene polymorphism (G276T) is not associated with incipient diabetic nephropathy in Japanese type 2 diabetic patients. Metabolism 53:1223–1226PubMedCrossRefGoogle Scholar
  85. 85.
    Panidis D, Kourtis A, Kukuvitis A et al (2004) Association of the T45G polymorphism in exon 2 of the adiponectin gene with polycystic ovary syndrome: role of {Delta}4-androstenedione. Hum Reprod 19:1728–1733PubMedCrossRefGoogle Scholar
  86. 86.
    San Millan JL, Corton M, Villuendas G, Sancho J, Peral B, Escobar-Morreale HF (2004) Association of the polycystic ovary syndrome with genomic variants related to insulin resistance, type 2 diabetes mellitus, and obesity. J Clin Endocrinol Metab 89:2640–2646CrossRefGoogle Scholar
  87. 87.
    Comuzzie AG, Funahashi T, Sonnenberg G et al (2001) The genetic basis of plasma variation in adiponectin, a global endophenotype for obesity and the metabolic syndrome. J Clin Endocrinol Metab 86:4321–4325PubMedCrossRefGoogle Scholar
  88. 88.
    Lindsay RS, Funahashi T, Krakoff J et al (2003) Genome-wide linkage analysis of serum adiponectin in the pima Indian population. Diabetes 52:2419–2425PubMedCrossRefGoogle Scholar
  89. 89.
    Chuang LM, Chiu YF, Sheu WH et al (2004) Biethnic comparisons of autosomal genomic scan for loci linked to plasma adiponectin in populations of Chinese and Japanese origin. J Clin Endocrinol Metab 89:5772–5778PubMedCrossRefGoogle Scholar
  90. 90.
    Savage DB, Tan GD, Acerini CL et al (2003) Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes 52:910–917PubMedCrossRefGoogle Scholar
  91. 91.
    Yamamoto Y, Hirose H, Miyashita K et al (2002) PPAR(gamma)2 gene Pro12Ala polymorphism may influence serum level of an adipocyte-derived protein, adiponectin, in the Japanese population. Metabolism 51:1407–1409PubMedCrossRefGoogle Scholar
  92. 92.
    Takata N, Awata T, Inukai K et al (2004) Pro12Ala substitution in peroxisome proliferator-activated receptor gamma 2 is associated with low adiponectin concentrations in young Japanese men. Metabolism 53:1548–1551PubMedCrossRefGoogle Scholar
  93. 93.
    Mousavinasab F, Tahtinen T, Jokelainen J et al (2005) Common polymorphisms in the PPARgamma2 and IRS-1 genes and their interaction influence serum adiponectin concentration in young Finnish men. Mol Genet Metab 84:344–348PubMedCrossRefGoogle Scholar
  94. 94.
    Thamer C, Machicao F, Fritsche A, Stumvoll M, Haring H (2003) No influence of the PPARgamma2 Pro12Ala genotype on serum adiponectin concentrations in healthy Europeans. Metabolism 52:798; author reply 798–799PubMedCrossRefGoogle Scholar
  95. 95.
    Orio F Jr, Palomba S, Cascella T et al (2004) Lack of an association between peroxisome proliferator-activated receptor-gamma gene Pro12Ala polymorphism and adiponectin levels in the polycystic ovary syndrome. J Clin Endocrinol Metab 89:5110–5115CrossRefGoogle Scholar
  96. 96.
    Waki H, Yamauchi T, Kamon J et al (2003) Impaired multimerization of human adiponectin mutants associated with diabetes: molecular structure and multimer formation of adiponectin. J Biol Chem 23:23Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Graduate Institute of Clinical Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan,People's Republic of China
  2. 2.Division of Endocrinology and Metabolism, Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan,People's Republic of China
  3. 3.Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan,People's Republic of China

Personalised recommendations