Journal of Molecular Medicine

, Volume 83, Issue 5, pp 362–376 | Cite as

Gene expression profiling: cell cycle deregulation and aneuploidy do not cause breast cancer formation in WAP-SVT/t transgenic animals

  • Andreas Klein
  • Eva Guhl
  • Raphael Zollinger
  • Yin-Jeh Tzeng
  • Ralf Wessel
  • Michael Hummel
  • Monika Graessmann
  • Adolf Graessmann
Original Article


Microarray studies revealed that as a first hit the SV40 T/t antigen causes deregulation of 462 genes in mammary gland cells (ME cells) of WAP-SVT/t transgenic animals. The majority of deregulated genes are cell proliferation specific and Rb-E2F dependent, causing ME cell proliferation and gland hyperplasia but not breast cancer formation. In the breast tumor cells a further 207 genes are differentially expressed, most of them belonging to the cell communication category. In tissue culture breast tumor cells frequently switch off WAP-SVT/t transgene expression and regain the morphology and growth characteristics of normal ME cells, although the tumor-revertant cells are aneuploid and only 114 genes regain the expression level of normal ME cells. The profile of retransformants shows that only 38 deregulated genes are tumor-specific, and that none of them is considered to be a typical breast cancer gene.


Breast cancer Mammary gland epithelial cells SV40 T/t antigen Tumorigenesis WAP-SVT/t transgene 



Correspondence analysis


Dulcecco’s modified Eagle medium


Interferon regulatory factor


Mammary gland epithelial


2′-5′-Oligoadenylate synthetase family members


Phosphate-buffered saline


Simian virus 40


Whey acidic milk protein



This work was supported by the Verband der Chemischen Industrie. We thank Dr. A. Corfield for critical reading of the manuscript.

Supplementary material

Supplement 1 462 differentially expressed genes from normal to transgenic animals (first hit)

Supplement_1.pdf (93 kb)
(PDF 93 KB)

Supplement 2 207 differentially expressed genes from transgenic to tumor animals (second hit)

Supplement_2.pdf (58 kb)
(PDF 58 KB)

Supplement 3 114 differentially expressed genes from breast tumor to Revertant-ME-B cells

Supplement_3.pdf (94 kb)
(PDF 95 KB)


  1. 1.
    Loeb LA, Loeb KR, Anderson JP (2003) Multiple mutations and cancer. Proc Natl Acad Sci USA 100:776–781CrossRefGoogle Scholar
  2. 2.
    Oesterreich S, Fuqua SA (1999) Tumor suppressor genes in breast cancer. Endocr Relat Cancer 6:405–419CrossRefGoogle Scholar
  3. 3.
    Hulit J, Lee RJ, Russell RG, Pestell RG (2002) ErbB-2-induced mammary tumor growth: the role of cyclin D1 and p27Kip1. Biochem Pharmacol 64:827–836Google Scholar
  4. 4.
    Ness SA (1996) The Myb oncoprotein: regulating a regulator. Biochim Biophys Acta 1288:123–139Google Scholar
  5. 5.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning P, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752CrossRefGoogle Scholar
  6. 6.
    Graessmann M, Graessman A (1976) “Early” simian-virus-40-specific RNA contains information for tumor antigen formation and chromatin replication. Proc Natl Acad Sci USA 73:366–370Google Scholar
  7. 7.
    Ali SH, DeCaprio JA (2001) Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol 11:15–23CrossRefGoogle Scholar
  8. 8.
    Klein A, Guhl E, Tzeng YJ, Fuhrhop J, Levrero M, Graessmann M, Graessmann A (2003) HBX causes cyclin D1 overexpression and development of breast cancer in transgenic animals that are heterozygous for p53. Oncogene 22:2910–2919CrossRefGoogle Scholar
  9. 9.
    Tzeng YJ, Guhl E, Graessmann M, Graessmann A (1993) Breast cancer formation in transgenic animals induced by the whey acidic protein SV40 T antigen (WAP-SV-T) hybrid gene. Oncogene 8:1965–1971Google Scholar
  10. 10.
    Tzeng YJ, Zimmermann C, Guhl E, Berg B, Avantaggiati ML, Graessmann A (1998) SV40 T/t-antigen induces premature mammary gland involution by apoptosis and selects for p53 missense mutation in mammary tumors. Oncogene 16:2103–2114CrossRefGoogle Scholar
  11. 11.
    DeGregori J (2002) The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochim Biophys Acta 1602:131–150Google Scholar
  12. 12.
    Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221CrossRefGoogle Scholar
  13. 13.
    Pun T, Hochstrasser DF, Appel RD, Funk M, Villars-Augsburger V, Pellegrini C (1988) Computerized classification of two-dimensional gel electrophoretograms by correspondence analysis and ascendant hierarchical clustering. Appl Theor Electrophor 1:3–9Google Scholar
  14. 14.
    Fellenberg K, Hauser N, Brors B, Neutzner A, Hoheisel JD, Vingron M (2001) Correspondence analysis applied to microarray data. Proc Natl Acad Sci USA 98:10781–10786CrossRefGoogle Scholar
  15. 15.
    Graessmann M, Michaels G, Berg B, Graessmann A (1991) Inhibition of SV40 gene expression by microinjected small antisense RNA and DNA molecules. Nucleic Acids Res 19:53–58Google Scholar
  16. 16.
    Santarelli R, Tzeng YJ, Zimmermann C, Guhl E, Graessmann A (1996) SV40 T-antigen induces breast cancer formation with a high efficiency in lactating and virgin WAP-SV-T transgenic animals but with a low efficiency in ovariectomized animals. Oncogene 12:495–505Google Scholar
  17. 17.
    Lamote I, Meyer E, Massart-Leen AM, Burvenich C (2004) Sex steroids and growth factors in the regulation of mammary gland proliferation, differentiation, and involution. Steroids 69:145–159CrossRefGoogle Scholar
  18. 18.
    Goetz F, Tzeng YJ, Guhl E, Merker J, Graessmann M, Graessmann A (2001) The SV40 small t-antigen prevents mammary gland differentiation and induces breast cancer formation in transgenic mice; truncated large T-antigen molecules harboring the intact p53 and pRb binding region do not have this effect. Oncogene 20:2325–2332CrossRefGoogle Scholar
  19. 19.
    Hernando E, Nahle Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M, Michel L, Mittal V, Gerald W, Benezra R, Lowe SW, Cordon-Cardo C (2004) Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430:797–802CrossRefGoogle Scholar
  20. 20.
    Zhou A, Hassel BA, Silverman RH (1993) Expression cloning of 2–5A-dependent RNAase: a uniquely regulated mediator of interferon action. Cell 72:53–65Google Scholar
  21. 21.
    Rogozin IB, Aravind L, Koonin EV (2003) Differential action of natural selection on the N and C-terminal domains of 2′-5′ oligoadenylate synthetases and the potential nuclease function of the C-terminal domain. J Mol Biol 326:1449–‘1461CrossRefGoogle Scholar
  22. 22.
    Ghosh A, Sarkar SN, Rowe TM, Sen GC (2001) A specific isozyme of 2′-5′ oligoadenylate synthetase is a dual function proapoptotic protein of the Bcl-2 family. J Biol Chem 276:25447–25455CrossRefGoogle Scholar
  23. 23.
    Kohlhoff S, Ziechmann C, Gottlob K, Graessmann M (2000) SV40 T/t-antigens sensitize mammary gland epithelial cells to oxidative stress and apoptosis. Free Radic Biol Med 29:497–506CrossRefGoogle Scholar
  24. 24.
    Zhang L, Pagano JS (2002) Structure and function of IRF-7. J Interferon Cytokine Res 22:95–101Google Scholar
  25. 25.
    Avantaggiati ML, Carbone M, Graessmann A, Nakatani Y, Howard B, Levine AS (1996) The SV40 large T antigen and adenovirus E1a oncoproteins interact with distinct isoforms of the transcriptional co-activator, p300. EMBO J 15:2236–2248Google Scholar
  26. 26.
    Caillaud A, Prakash A, Smith E, Masumi A, Hovanessian AG, Levy DE, Marie I (2002) Acetylation of interferon regulatory factor-7 by p300/CREB-binding protein (CBP)-associated factor (PCAF) impairs its DNA binding. J Biol Chem 277:49417–49421CrossRefGoogle Scholar
  27. 27.
    Lubyova B, Kellum MJ, Frisancho AJ, Pitha PM (2004) Kaposi’s sarcoma-associated herpesvirus-encoded vIRF-3 stimulates the transcriptional activity of cellular IRF-3 and IRF-7. J Biol Chem 279:7643–7654CrossRefGoogle Scholar
  28. 28.
    Hamerman JA, Hayashi F, Schroeder LA, Gygi SP, Haas AL, Hampson L, Coughlin P, Aebersold R, Aderem A (2002) Serpin 2a is induced in activated macrophages and conjugates to a ubiquitin homolog. J Immunol 168:2415–2423Google Scholar
  29. 29.
    Malakhov MP, Kim KI, Malakhova OA, Jacobs BS, Borden EC, Zhang DE (2003) High-throughput immunoblotting. Ubiquitiin-like protein ISG15 modifies key regulators of signal transduction. J Biol Chem 278:16608–16613CrossRefGoogle Scholar
  30. 30.
    Padovan E, Terracciano L, Certa U, Jacobs B, Reschner A, Bolli M, Spagnoli GC, Borden EC, Heberer M (2002) Interferon stimulated gene 15 constitutively produced by melanoma cells induces e-cadherin expression on human dendritic cells. Cancer Res 62:3453–3458Google Scholar
  31. 31.
    Linforth R, Anderson N, Hoey R, Nolan T, Downey S, Brady G, Ashcroft L, Bundred N (2002) Coexpression of parathyroid hormone related protein and its receptor in early breast cancer predicts poor patient survival. Clin Cancer Res 8:3172–177Google Scholar
  32. 32.
    Hubert RS, Vivanco I, Chen E, Rastegar S, Leong K, Mitchell SC, Madraswala R, Zhou Y, Kuo J, Raitano AB, Jakobovits A, Saffran DC, Afar DE (1999) STEAP: a prostate-specific cell-surface antigen highly expressed in human prostate tumors. Proc Natl Acad Sci USA 96:14523–14528CrossRefGoogle Scholar
  33. 33.
    Yang D, Holt GE, Velders MP, Kwon ED, Kast WM (2002) Murine six-transmembrane epithelial antigen of the prostate, prostate stem cell antigen, and prostate-specific membrane antigen: prostate-specific cell-surface antigens highly expressed in prostate cancer of transgenic adenocarcinoma mouse prostate mice. Cancer Res 61:5857–58560Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Andreas Klein
    • 1
  • Eva Guhl
    • 1
  • Raphael Zollinger
    • 2
  • Yin-Jeh Tzeng
    • 3
  • Ralf Wessel
    • 1
  • Michael Hummel
    • 2
  • Monika Graessmann
    • 1
  • Adolf Graessmann
    • 1
  1. 1.Institut für Molekularbiologie und Bioinformatik, Charité Hospital, Campus Benjamin FranklinUniversitätsmedizin BerlinBerlinGermany
  2. 2.Institut für Pathologie, Charité Hospital, Campus Benjamin FranklinUniversitätsmedizin BerlinBerlinGermany
  3. 3.Graduate Institute of Molecular and Cell BiologyTzu-Chi UniversityHualienTaiwan

Personalised recommendations