Journal of Molecular Medicine

, Volume 83, Issue 2, pp 97–109 | Cite as

Regulatory polymorphisms underlying complex disease traits

  • Julian C. Knight


There is growing evidence that genetic variation plays an important role in the determination of individual susceptibility to complex disease traits. In contrast to coding sequence polymorphisms, where the consequences of non-synonymous variation may be resolved at the level of the protein phenotype, defining specific functional regulatory polymorphisms has proved problematic. This has arisen for a number of reasons, including difficulties with fine mapping due to linkage disequilibrium, together with a paucity of experimental tools to resolve the effects of non-coding sequence variation on gene expression. Recent studies have shown that variation in gene expression is heritable and can be mapped as a quantitative trait. Allele-specific effects on gene expression appear relatively common, typically of modest magnitude and context specific. The role of regulatory polymorphisms in determining susceptibility to a number of complex disease traits is discussed, including variation at the VNTR of INS, encoding insulin, in type 1 diabetes and polymorphism of CTLA4, encoding cytotoxic T lymphocyte antigen, in autoimmune disease. Examples where regulatory polymorphisms have been found to play a role in mongenic traits such as factor VII deficiency are discussed, and contrasted with those polymorphisms associated with ischaemic heart disease at the same gene locus. Molecular mechanisms operating in an allele-specific manner at the level of transcription are illustrated, with examples including the role of Duffy binding protein in malaria. The difficulty of resolving specific functional regulatory variants arising from linkage disequilibrium is demonstrated using a number of examples including polymorphism of CCR5, encoding CC chemokine receptor 5, and HIV-1 infection. The importance of understanding haplotypic structure to the design and interpretation of functional assays of putative regulatory variation is highlighted, together with discussion of the strategic use of experimental tools to resolve regulatory polymorphisms at a transcriptional level. A number of examples are discussed including work on the TNF locus which demonstrate biological and experimental context specificity. Regulatory variation may also operate at other levels of control of gene expression and the modulation of splicing at PTPRC, encoding protein tyrosine phosphatase receptor-type C, and of translational efficiency at F12, encoding factor XII, are discussed.


Gene expression Genetics Gene polymorphism Promoter Transcription 



Human immunodeficiency virus


Hepatic nuclear factor


Nuclear factor


Single nucleotide polymorphism


Tumour necrosis factor


Untranslated region


Variable number tandem repeat


  1. 1.
    Glazier AM, Nadeau JH, Aitman TJ (2002) Finding genes that underlie complex traits. Science 298:2345–2349CrossRefPubMedGoogle Scholar
  2. 2.
    Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517Google Scholar
  3. 3.
    Carlson CS, Eberle MA, Kruglyak L, Nickerson DA (2004) Mapping complex disease loci in whole-genome association studies. Nature 429:446–452CrossRefPubMedGoogle Scholar
  4. 4.
    Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 22:231–238CrossRefPubMedGoogle Scholar
  5. 5.
    King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116PubMedGoogle Scholar
  6. 6.
    Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, Romano LA (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20:1377–1419CrossRefPubMedGoogle Scholar
  7. 7.
    Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302CrossRefPubMedGoogle Scholar
  8. 8.
    Yvert G, Brem RB, Whittle J, Akey JM, Foss E, Smith EN, Mackelprang R, Kruglyak L (2003) Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet 35:57–64CrossRefGoogle Scholar
  9. 9.
    Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296:752–755CrossRefPubMedGoogle Scholar
  10. 10.
    Townsend JP, Cavalieri D, Hartl DL (2003) Population genetic variation in genome-wide gene expression. Mol Biol Evol 20:955–963CrossRefPubMedGoogle Scholar
  11. 11.
    Fay JC, McCullough HL, Sniegowski PD, Eisen MB (2004) Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae. Genome Biol 5:R26CrossRefPubMedGoogle Scholar
  12. 12.
    Rifkin SA, Kim J, White KP (2003) Evolution of gene expression in the Drosophila melanogaster subgroup. Nat Genet 33:138–144CrossRefPubMedGoogle Scholar
  13. 13.
    Oleksiak MF, Churchill GA, Crawford DL (2002) Variation in gene expression within and among natural populations. Nat Genet 32:261–266CrossRefPubMedGoogle Scholar
  14. 14.
    Enard W, Khaitovich P, Klose J, Zollner S, Heissig F, Giavalisco P, Nieselt-Struwe K, Muchmore E, Varki A, Ravid R, Doxiadis GM, Bontrop RE, Paabo S (2002) Intra- and interspecific variation in primate gene expression patterns. Science 296:340–343CrossRefPubMedGoogle Scholar
  15. 15.
    Cheung VG, Conlin LK, Weber TM, Arcaro M, Jen KY, Morley M, Spielman RS (2003) Natural variation in human gene expression assessed in lymphoblastoid cells. Nat Genet 33:422–425CrossRefPubMedGoogle Scholar
  16. 16.
    Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, Cheung VG (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430:743–747CrossRefPubMedGoogle Scholar
  17. 17.
    Knight JC (2004) Allele-specific gene expression uncovered. Trends Genet 20:113–116CrossRefPubMedGoogle Scholar
  18. 18.
    Yan H, Yuan W, Velculescu VE, Vogelstein B, Kinzler KW (2002) Allelic variation in human gene expression. Science 297:1143CrossRefPubMedGoogle Scholar
  19. 19.
    Pastinen T, Sladek R, Gurd S, Sammak A, Ge B, Lepage P, Lavergne K, Villeneuve A, Gaudin T, Brandstrom H, Beck A, Verner A, Kingsley J, Harmsen E, Labuda D, Morgan K, Vohl MC, Naumova AK, Sinnett D, Hudson TJ (2004) A survey of genetic and epigenetic variation affecting human gene expression. Physiol Genomics 16:184–193CrossRefPubMedGoogle Scholar
  20. 20.
    Cowles CR, Hirschhorn JN, Altshuler D, Lander ES (2002) Detection of regulatory variation in mouse genes. Nat Genet 32:432–437CrossRefPubMedGoogle Scholar
  21. 21.
    Bray NJ, Buckland PR, Owen MJ, O’Donovan MC (2003) Cis-acting variation in the expression of a high proportion of genes in human brain. Hum Genet 113:149–153PubMedGoogle Scholar
  22. 22.
    Alam J, Cook JL (1990) Reporter genes: application to the study of mammalian gene transcription. Anal Biochem 188:245–254PubMedGoogle Scholar
  23. 23.
    Rockman MV, Wray GA (2002) Abundant raw material for cis-regulatory evolution in humans. Mol Biol Evol 19:1991–2004PubMedGoogle Scholar
  24. 24.
    Hoogendoorn B, Coleman SL, Guy CA, Smith K, Bowen T, Buckland PR, O’Donovan MC (2003) Functional analysis of human promoter polymorphisms. Hum Mol Genet 12:2249–2254CrossRefPubMedGoogle Scholar
  25. 25.
    Buckland PR, Coleman SL, Hoogendoorn B, Guy C, Smith SK, O’Donovan MC (2004) A high proportion of chromosome 21 promoter polymorphisms influence transcriptional activity. Gene Expr 11:233–239PubMedGoogle Scholar
  26. 26.
    Hoogendoorn B, Coleman SL, Guy CA, Smith SK, O’Donovan MC, Buckland PR (2004) Functional analysis of polymorphisms in the promoter regions of genes on 22q11. Hum Mutat 24:35–42CrossRefPubMedGoogle Scholar
  27. 27.
    Banerjee P, Bahlo M, Schwartz JR, Loots GG, Houston KA, Dubchak I, Speed TP, Rubin EM (2002) SNPs in putative regulatory regions identified by human mouse comparative sequencing and transcription factor binding site data. Mamm Genome 13:554–557CrossRefPubMedGoogle Scholar
  28. 28.
    Bulyk ML (2003) Computational prediction of transcription-factor binding site locations. Genome Biol 5:201CrossRefPubMedGoogle Scholar
  29. 29.
    Linnell J, Mott R, Field S, Kwiatkowski DP, Ragoussis J, Udalova IA (2004) Quantitative high-throughput analysis of transcription factor binding specificities. Nucleic Acids Res 32:e44CrossRefPubMedGoogle Scholar
  30. 30.
    Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G, Herr MH, Dahlman I, Payne F, Smyth D, Lowe C, Twells RC, Howlett S, Healy B, Nutland S, Rance HE, Everett V, Smink LJ, Lam AC, Cordell HJ, Walker NM, Bordin C, Hulme J, Motzo C, Cucca F, Hess JF, Metzker ML, Rogers J, Gregory S, Allahabadia A, Nithiyananthan R, Tuomilehto-Wolf E, Tuomilehto J, Bingley P, Gillespie KM, Undlien DE, Ronningen KS, Guja C, Ionescu-Tirgoviste C, Savage DA, Maxwell AP, Carson DJ, Patterson CC, Franklyn JA, Clayton DG, Peterson LB, Wicker LS, Todd JA, Gough SC (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511CrossRefPubMedGoogle Scholar
  31. 31.
    Tournamille C, Colin Y, Cartron JP, Le Van Kim C (1995) Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet 10:224–228PubMedGoogle Scholar
  32. 32.
    Kennedy GC, German MS, Rutter WJ (1995) The minisatellite in the diabetes susceptibility locus IDDM 2 regulates insulin transcription. Nat Genet 9:293–298CrossRefPubMedGoogle Scholar
  33. 33.
    Bell GI, Selby MJ, Rutter WJ (1982) The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 295:31–35PubMedGoogle Scholar
  34. 34.
    Bell GI, Horita S, Karam JH (1984) A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes 33:176–183PubMedGoogle Scholar
  35. 35.
    Hitman GA, Tarn AC, Winter RM, Drummond V, Williams LG, Jowett NI, Bottazzo GF, Galton DJ (1985) Type 1 (insulin-dependent) diabetes and a highly variable locus close to the insulin gene on chromosome 11. Diabetologia 28:218–222CrossRefPubMedGoogle Scholar
  36. 36.
    Lucassen AM, Julier C, Beressi JP, Boitard C, Froguel P, Lathrop M, Bell JI (1993) Susceptibility to insulin dependent diabetes mellitus maps to a 4.1 kb segment of DNA spanning the insulin gene and associated VNTR. Nat Genet 4:305–310CrossRefPubMedGoogle Scholar
  37. 37.
    Bennett ST, Lucassen AM, Gough SC, Powell EE, Undlien DE, Pritchard LE, Merriman ME, Kawaguchi Y, Dronsfield MJ, Pociot F et al (1995) Susceptibility to human type 1 diabetes at IDDM 2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 9:284–292CrossRefPubMedGoogle Scholar
  38. 38.
    Barratt BJ, Payne F, Lowe CE, Hermann R, Healy BC, Harold D, Concannon P, Gharani N, McCarthy MI, Olavesen MG, McCormack R, Guja C, Ionescu-Tirgoviste C, Undlien DE, Ronningen KS, Gillespie KM, Tuomilehto-Wolf E, Tuomilehto J, Bennett ST, Clayton DG, Cordell HJ, Todd JA (2004) Remapping the insulin gene/IDDM 2 locus in type 1 diabetes. Diabetes 53:1884–1889PubMedGoogle Scholar
  39. 39.
    Pugliese A, Awdeh ZL, Alper CA, Jackson RA, Eisenbarth GS (1994) The paternally inherited insulin gene B allele (1,428 FokI site) confers protection from insulin-dependent diabetes in families. J Autoimmunol 7:687–694CrossRefGoogle Scholar
  40. 40.
    Bennett ST, Wilson AJ, Cucca F, Nerup J, Pociot F, McKinney PA, Barnett AH, Bain SC, Todd JA (1996) IDDM 2-VNTR-encoded susceptibility to type 1 diabetes: dominant protection and parental transmission of alleles of the insulin gene-linked minisatellite locus. J Autoimmunol 9:415–421CrossRefGoogle Scholar
  41. 41.
    Florez JC, Hirschhorn J, Altshuler D (2003) The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits. Annu Rev Genomics Hum Genet 4:257–291CrossRefPubMedGoogle Scholar
  42. 42.
    Vafiadis P, Bennett ST, Colle E, Grabs R, Goodyer CG, Polychronakos C (1996) Imprinted and genotype-specific expression of genes at the IDDM 2 locus in pancreas and leucocytes. J Autoimmunol 9:397–403CrossRefGoogle Scholar
  43. 43.
    Weaver JU, Kopelman PG, Hitman GA (1992) Central obesity and hyperinsulinaemia in women are associated with polymorphism in the 5′ flanking region of the human insulin gene. Eur J Clin Invest 22:265–270PubMedGoogle Scholar
  44. 44.
    Cocozza S, Riccardi G, Monticelli A, Capaldo B, Genovese S, Krogh V, Celentano E, Farinaro E, Varrone S, Avvedimento VE (1988) Polymorphism at the 5′ end flanking region of the insulin gene is associated with reduced insulin secretion in healthy individuals. Eur J Clin Invest 18:582–586PubMedGoogle Scholar
  45. 45.
    Permutt MA, Rotwein P, Andreone T, Ward WK, Porte D Jr (1985) Islet beta-cell function and polymorphism in the 5′-flanking region of the human insulin gene. Diabetes 34:311–314PubMedGoogle Scholar
  46. 46.
    Owerbach D, Poulsen S, Billesbolle P, Nerup J (1982) DNA insertion sequences near the insulin gene affect glucose regulation. Lancet I:880–883CrossRefGoogle Scholar
  47. 47.
    Lucassen AM, Screaton GR, Julier C, Elliott TJ, Lathrop M, Bell JI (1995) Regulation of insulin gene expression by the IDDM associated, insulin locus haplotype. Hum Mol Genet 4:501–506PubMedGoogle Scholar
  48. 48.
    Catasti P, Chen X, Moyzis RK, Bradbury EM, Gupta G (1996) Structure-function correlations of the insulin-linked polymorphic region. J Mol Biol 264:534–545CrossRefPubMedGoogle Scholar
  49. 49.
    Lew A, Rutter WJ, Kennedy GC (2000) Unusual DNA structure of the diabetes susceptibility locus IDDM 2 and its effect on transcription by the insulin promoter factor Pur-1/MAZ. Proc Natl Acad Sci U S A 97:12508–12512CrossRefPubMedGoogle Scholar
  50. 50.
    Pugliese A, Zeller M, Fernandez A Jr, Zalcberg LJ, Bartlett RJ, Ricordi C, Pietropaolo M, Eisenbarth GS, Bennett ST, Patel DD (1997) The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM 2 susceptibility locus for type 1 diabetes. Nat Genet 15:293–297CrossRefPubMedGoogle Scholar
  51. 51.
    Vafiadis P, Bennett ST, Todd JA, Nadeau J, Grabs R, Goodyer CG, Wickramasinghe S, Colle E, Polychronakos C (1997) Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM 2 locus. Nat Genet 15:289–292CrossRefPubMedGoogle Scholar
  52. 52.
    Paquette J, Giannoukakis N, Polychronakos C, Vafiadis P, Deal C (1998) The INS 5′ variable number of tandem repeats is associated with IGF2 expression in humans. J Biol Chem 273:14158–14164CrossRefPubMedGoogle Scholar
  53. 53.
    Vafiadis P, Grabs R, Goodyer CG, Colle E, Polychronakos C (1998) A functional analysis of the role of IGF2 in IDDM 2-encoded susceptibility to type 1 diabetes. Diabetes 47:831–836PubMedGoogle Scholar
  54. 54.
    Cooke GS, Hill AV (2001) Genetics of susceptibility to human infectious disease. Nat Rev Genet 2:967–977CrossRefPubMedGoogle Scholar
  55. 55.
    Theodorou I, Capoulade C, Combadiere C, Debre P (2003) Genetic control of HIV disease. Trends Microbiol 11:392–397CrossRefPubMedGoogle Scholar
  56. 56.
    Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725CrossRefPubMedGoogle Scholar
  57. 57.
    Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T, Kang S, Ceradini D, Jin Z, Yazdanbakhsh K, Kunstman K, Erickson D, Dragon E, Landau NR, Phair J, Ho DD, Koup RA (1996) The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 2:1240–1243CrossRefPubMedGoogle Scholar
  58. 58.
    Anastassopoulou CG, Kostrikis LG (2003) The impact of human allelic variation on HIV-1 disease. Curr HIV Res 1:185–203PubMedGoogle Scholar
  59. 59.
    Martin MP, Dean M, Smith MW, Winkler C, Gerrard B, Michael NL, Lee B, Doms RW, Margolick J, Buchbinder S, Goedert JJ, O’Brien TR, Hilgartner MW, Vlahov D, O’Brien SJ, Carrington M (1998) Genetic acceleration of AIDS progression by a promoter variant of CCR5. Science 282:1907–1911CrossRefPubMedGoogle Scholar
  60. 60.
    McDermott DH, Zimmerman PA, Guignard F, Kleeberger CA, Leitman SF, Murphy PM (1998) CCR5 promoter polymorphism and HIV-1 disease progression. Multicenter AIDS Cohort Study (MACS). Lancet 352:866–870CrossRefPubMedGoogle Scholar
  61. 61.
    Mummidi S, Ahuja SS, Gonzalez E, Anderson SA, Santiago EN, Stephan KT, Craig FE, O’Connell P, Tryon V, Clark RA, Dolan MJ, Ahuja SK (1998) Genealogy of the CCR5 locus and chemokine system gene variants associated with altered rates of HIV-1 disease progression. Nat Med 4:786–793CrossRefPubMedGoogle Scholar
  62. 62.
    Clegg AO, Ashton LJ, Biti RA, Badhwar P, Williamson P, Kaldor JM, Stewart GJ (2000) CCR5 promoter polymorphisms, CCR5 59029A and CCR5 59353C, are under represented in HIV-1-infected long-term non-progressors. The Australian Long-Term Non-Progressor Study Group. AIDS 14:103–108CrossRefPubMedGoogle Scholar
  63. 63.
    Knudsen TB, Kristiansen TB, Katzenstein TL, Eugen-Olsen J (2001) Adverse effect of the CCR5 promoter −2459A allele on HIV-1 disease progression. J Med Virol 65:441–444PubMedGoogle Scholar
  64. 64.
    Mummidi S, Bamshad M, Ahuja SS, Gonzalez E, Feuillet PM, Begum K, Galvis MC, Kostecki V, Valente AJ, Murthy KK, Haro L, Dolan MJ, Allan JS, Ahuja SK (2000) Evolution of human and non-human primate CC chemokine receptor 5 gene and mRNA. Potential roles for haplotype and mRNA diversity, differential haplotype-specific transcriptional activity, and altered transcription factor binding to polymorphic nucleotides in the pathogenesis of HIV-1 and simian immunodeficiency virus. J Biol Chem 275:18946–18961CrossRefPubMedGoogle Scholar
  65. 65.
    Salkowitz JR, Bruse SE, Meyerson H, Valdez H, Mosier DE, Harding CV, Zimmerman PA, Lederman MM (2003) CCR5 promoter polymorphism determines macrophage CCR5 density and magnitude of HIV-1 propagation in vitro. Clin Immunol 108:234–240CrossRefPubMedGoogle Scholar
  66. 66.
    Kawamura T, Gulden FO, Sugaya M, McNamara DT, Borris DL, Lederman MM, Orenstein JM, Zimmerman PA, Blauvelt A (2003) R5 HIV productively infects Langerhans cells, and infection levels are regulated by compound CCR5 polymorphisms. Proc Natl Acad Sci U S A 100:8401–8406CrossRefPubMedGoogle Scholar
  67. 67.
    Bream JH, Young HA, Rice N, Martin MP, Smith MW, Carrington M, O’Brien SJ (1999) CCR5 promoter alleles and specific DNA binding factors. Science 284:223CrossRefPubMedGoogle Scholar
  68. 68.
    Jepson A, Sisay-Joof F, Banya W, Hassan-King M, Frodsham A, Bennett S, Hill AVS, Whittle H (1997) Genetic linkage of mild malaria to the major histocompatibility complex in Gambian children: study of affected sibling pairs. BMJ 315:96–97PubMedGoogle Scholar
  69. 69.
    Flori L, Sawadogo S, Esnault C, Delahaye NF, Fumoux F, Rihet P (2003) Linkage of mild malaria to the major histocompatibility complex in families living in Burkina Faso. Hum Mol Genet 12:375–378CrossRefPubMedGoogle Scholar
  70. 70.
    McGuire W, Hill AVS, Allsopp CEM, Greenwood BM, Kwiatkowski D (1994) Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature 371:508–511CrossRefPubMedGoogle Scholar
  71. 71.
    Wattavidanage J, Carter R, Perera KL, Munasingha A, Bandara S, McGuinness D, Wickramasinghe AR, Alles HK, Mendis KN, Premawansa S (1999) TNFalpha*2 marks high risk of severe disease during Plasmodium falciparum malaria and other infections in Sri Lankans. Clin Exp Immunol 115:350–355CrossRefPubMedGoogle Scholar
  72. 72.
    Padyukov L, Lampa J, Heimburger M, Ernestam S, Cederholm T, Lundkvist I, Andersson P, Hermansson Y, Harju A, Klareskog L, Bratt J (2003) Genetic markers for the efficacy of tumour necrosis factor blocking therapy in rheumatoid arthritis. Ann Rheum Dis 62:526–529CrossRefPubMedGoogle Scholar
  73. 73.
    Mugnier B, Balandraud N, Darque A, Roudier C, Roudier J, Reviron D (2003) Polymorphism at position −308 of the tumor necrosis factor alpha gene influences outcome of infliximab therapy in rheumatoid arthritis. Arthritis Rheum 48:1849–1852CrossRefPubMedGoogle Scholar
  74. 74.
    Allen RD (1999) Polymorphism of the human TNF-alpha promoter-random variation or functional diversity? Mol Immunol 36:1017–1027Google Scholar
  75. 75.
    Bayley JP, Ottenhoff TH, Verweij CL (2004) Is there a future for TNF promoter polymorphisms? Genes Immunol 5:315–329CrossRefGoogle Scholar
  76. 76.
    Kroeger KM, Steer JH, Joyce DA, Abraham LJ (2000) Effects of stimulus and cell type on the expression of the −308 tumour necrosis factor promoter polymorphism. Cytokine 12:110–119CrossRefPubMedGoogle Scholar
  77. 77.
    Kroeger KM, Carville KS, Abraham LJ (1997) The −308 tumor necrosis factor-alpha promoter polymorphism effects transcription. Mol Immunol 34:391–399CrossRefPubMedGoogle Scholar
  78. 78.
    Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW (1997) Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci USA 94:3195–3199CrossRefPubMedGoogle Scholar
  79. 79.
    Knight JC, Udalova I, Hill AV, Greenwood BM, Peshu N, Marsh K, Kwiatkowski D (1999) A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. Nat Genet 22:145–150CrossRefPubMedGoogle Scholar
  80. 80.
    Knight JC, Keating BJ, Rockett KA, Kwiatkowski DP (2003) In vivo characterization of regulatory polymorphisms by allele-specific quantification of RNA polymerase loading. Nat Genet 33:469–475CrossRefPubMedGoogle Scholar
  81. 81.
    Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R, Tsunoda T, Sato H, Hori M, Nakamura Y, Tanaka T (2002) Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet 32:650–654CrossRefPubMedGoogle Scholar
  82. 82.
    Newton J, Brown MA, Milicic A, Ackerman H, Darke C, Wilson JN, Wordsworth BP, Kwiatkowski D (2003) The effect of HLA-DR on susceptibility to rheumatoid arthritis is influenced by the associated lymphotoxin alpha-tumor necrosis factor haplotype. Arthritis Rheum 48:90–96CrossRefPubMedGoogle Scholar
  83. 83.
    Knight JC, Keating BJ, Kwiatkowski DP (2004) Allele-specific repression of lymphotoxin-alpha by activated B cell factor-1. Nat Genet 36:394–399CrossRefPubMedGoogle Scholar
  84. 84.
    McGuire W, Knight JC, Hill AV, Allsopp CE, Greenwood BM, Kwiatkowski D (1999) Severe malarial anemia and cerebral malaria are associated with different tumor necrosis factor promoter alleles. J Infect Dis 179:287–290CrossRefPubMedGoogle Scholar
  85. 85.
    Mombo LE, Ntoumi F, Bisseye C, Ossari S, Lu CY, Nagel RL, Krishnamoorthy R (2003) Human genetic polymorphisms and asymptomatic Plasmodium falciparum malaria in Gabonese schoolchildren. Am J Trop Med Hyg 68:186–190PubMedGoogle Scholar
  86. 86.
    Fong CL, Siddiqui AH, Mark DF (1994) Identification and characterization of a novel repressor site in the human tumor necrosis factor alpha gene. Nucleic Acids Res 22:1108–1114PubMedGoogle Scholar
  87. 87.
    Fabris M, Di PE, D’Elia A, Damante G, Sinigaglia L, Ferraccioli G (2002) Tumor necrosis factor-alpha gene polymorphism in severe and mild-moderate rheumatoid arthritis. J Rheumatol 29:29–33PubMedGoogle Scholar
  88. 88.
    Brinkman BM, Huizinga TW, Kurban SS, van der Velde EA, Schreuder GM, Hazes JM, Breedveld FC, Verweij CL (1997) Tumour necrosis factor alpha gene polymorphisms in rheumatoid arthritis: association with susceptibility to, or severity of, disease? Br J Rheumatol 36:516–521CrossRefPubMedGoogle Scholar
  89. 89.
    Perry DJ (2002) Factor VII Deficiency. Br J Haematol 118:689–700CrossRefPubMedGoogle Scholar
  90. 90.
    Arbini AA, Pollak ES, Bayleran JK, High KA, Bauer KA (1997) Severe factor VII deficiency due to a mutation disrupting a hepatocyte nuclear factor 4 binding site in the factor VII promoter. Blood 89:176–182PubMedGoogle Scholar
  91. 91.
    Pollak ES, Hung HL, Godin W, Overton GC, High KA (1996) Functional characterization of the human factor VII 5′-flanking region. J Biol Chem 271:1738–1747CrossRefPubMedGoogle Scholar
  92. 92.
    Carew JA, Pollak ES, Lopaciuk S, Bauer KA (2000) A new mutation in the HNF4 binding region of the factor VII promoter in a patient with severe factor VII deficiency. Blood 96:4370–4372PubMedGoogle Scholar
  93. 93.
    Carew JA, Pollak ES, High KA, Bauer KA (1998) Severe factor VII deficiency due to a mutation disrupting an Sp1 binding site in the factor VII promoter. Blood 92:1639–1645PubMedGoogle Scholar
  94. 94.
    Greenberg D, Miao CH, Ho WT, Chung DW, Davie EW (1995) Liver-specific expression of the human factor VII gene. Proc Natl Acad Sci USA 92:12347–12351PubMedGoogle Scholar
  95. 95.
    Meade TW, Mellows S, Brozovic M, Miller GJ, Chakrabarti RR, North WR, Haines AP, Stirling Y, Imeson JD, Thompson SG (1986) Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet II:533–537CrossRefGoogle Scholar
  96. 96.
    Bernardi F, Marchetti G, Pinotti M, Arcieri P, Baroncini C, Papacchini M, Zepponi E, Ursicino N, Chiarotti F, Mariani G (1996) Factor VII gene polymorphisms contribute about one third of the factor VII level variation in plasma. Arterioscler Thromb Vasc Biol 16:72–76PubMedGoogle Scholar
  97. 97.
    Green F, Kelleher C, Wilkes H, Temple A, Meade T, Humphries S (1991) A common genetic polymorphism associated with lower coagulation factor VII levels in healthy individuals. Arterioscler Thromb 11:540–546PubMedGoogle Scholar
  98. 98.
    Iacoviello L, Di Castelnuovo A, De Knijff P, D’Orazio A, Amore C, Arboretti R, Kluft C, Benedetta Donati M (1998) Polymorphisms in the coagulation factor VII gene and the risk of myocardial infarction. N Engl J Med 338:79–85CrossRefPubMedGoogle Scholar
  99. 99.
    Girelli D, Russo C, Ferraresi P, Olivieri O, Pinotti M, Friso S, Manzato F, Mazzucco A, Bernardi F, Corrocher R (2000) Polymorphisms in the factor VII gene and the risk of myocardial infarction in patients with coronary artery disease. N Engl J Med 343:774–780CrossRefPubMedGoogle Scholar
  100. 100.
    Doggen CJ, Manger Cats V, Bertina RM, Reitsma PH, Vandenbroucke JP, Rosendaal FR (1998) A genetic propensity to high factor VII is not associated with the risk of myocardial infarction in men. Thromb Haemost 80:281–285PubMedGoogle Scholar
  101. 101.
    Batalla A, Alvarez R, Reguero JR, Gonzalez P, Alvarez V, Cubero GI, Cortina A, Coto E (2001) Lack of association between polymorphisms of the coagulation factor VII and myocardial infarction in middle-aged Spanish men. Int J Cardiol 80:209–212CrossRefPubMedGoogle Scholar
  102. 102.
    Carew JA, Basso F, Miller GJ, Hawe E, Jackson AA, Humphries SE, Bauer KA (2003) A functional haplotype in the 5′ flanking region of the factor VII gene is associated with an increased risk of coronary heart disease. J Thromb Haemost 1:2179–2185CrossRefPubMedGoogle Scholar
  103. 103.
    Di Castelnuovo A, D’Orazio A, Amore C, Falanga A, Donati MB, Iacoviello L (2000) The decanucleotide insertion/deletion polymorphism in the promoter region of the coagulation factor VII gene and the risk of familial myocardial infarction. Thromb Res 98:9–17CrossRefPubMedGoogle Scholar
  104. 104.
    Humphries S, Temple A, Lane A, Green F, Cooper J, Miller G (1996) Low plasma levels of factor VIIc and antigen are more strongly associated with the 10 base pair promoter (-323) insertion than the glutamine 353 variant. Thromb Haemost 75:567–572PubMedGoogle Scholar
  105. 105.
    Hunault M, Arbini AA, Lopaciuk S, Carew JA, Bauer KA (1997) The Arg353Gln polymorphism reduces the level of coagulation factor VII. In vivo and in vitro studies. Arterioscler Thromb Vasc Biol 17:2825–2829PubMedGoogle Scholar
  106. 106.
    Kudaravalli R, Tidd T, Pinotti M, Ratti A, Santacroce R, Margaglione M, Dallapiccola B, Bernardi F, Fortina P, Devoto M, Pollak ES (2002) Polymorphic changes in the 5′ flanking region of factor VII have a combined effect on promoter strength. Thromb Haemost 88:763–767PubMedGoogle Scholar
  107. 107.
    Hooft FM van ‘t, Silveira A, Tornvall P, Iliadou A, Ehrenborg E, Eriksson P, Hamsten A (1999) Two common functional polymorphisms in the promoter region of the coagulation factor VII gene determining plasma factor VII activity and mass concentration. Blood 93:3432–3441PubMedGoogle Scholar
  108. 108.
    Pinotti M, Toso R, Girelli D, Bindini D, Ferraresi P, Papa ML, Corrocher R, Marchetti G, Bernardi F (2000) Modulation of factor VII levels by intron 7 polymorphisms: population and in vitro studies. Blood 95:3423–3428PubMedGoogle Scholar
  109. 109.
    Miller LH, Mason SJ, Clyde DF, McGinniss MH (1976) The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med 295:302–304PubMedGoogle Scholar
  110. 110.
    Horuk R, Chitnis CE, Darbonne WC, Colby TJ, Rybicki A, Hadley TJ, Miller LH (1993) A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 261:1182–1184PubMedGoogle Scholar
  111. 111.
    Hamblin MT, Di Rienzo A (2000) Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am J Hum Genet 66:1669–1679CrossRefPubMedGoogle Scholar
  112. 112.
    Maniatis T, Reed R (2002) An extensive network of coupling among gene expression machines. Nature 416:499–506CrossRefPubMedGoogle Scholar
  113. 113.
    Orphanides G, Reinberg D (2002) A unified theory of gene expression. Cell 108:439–451CrossRefPubMedGoogle Scholar
  114. 114.
    Pagani F, Baralle FE (2004) Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet 5:389–396CrossRefPubMedGoogle Scholar
  115. 115.
    Lynch KW, Weiss A (2001) A CD45 polymorphism associated with multiple sclerosis disrupts an exonic splicing silencer. J Biol Chem 276:24341–24347CrossRefPubMedGoogle Scholar
  116. 116.
    Jacobsen M, Schweer D, Ziegler A, Gaber R, Schock S, Schwinzer R, Wonigeit K, Lindert RB, Kantarci O, Schaefer-Klein J, Schipper HI, Oertel WH, Heidenreich F, Weinshenker BG, Sommer N, Hemmer B (2000) A point mutation in PTPRC is associated with the development of multiple sclerosis. Nat Genet 26:495–499CrossRefPubMedGoogle Scholar
  117. 117.
    Barcellos LF, Caillier S, Dragone L, Elder M, Vittinghoff E, Bucher P, Lincoln RR, Pericak-Vance M, Haines JL, Weiss A, Hauser SL, Oksenberg JR (2001) PTPRC (CD45) is not associated with the development of multiple sclerosis in U.S. patients. Nat Genet 29:23–24CrossRefPubMedGoogle Scholar
  118. 118.
    Schwinzer R, Wonigeit K (1990) Genetically determined lack of CD45R-T cells in healthy individuals. Evidence for a regulatory polymorphism of CD45R antigen expression. J Exp Med 171:1803–1808CrossRefPubMedGoogle Scholar
  119. 119.
    Thude H, Hundrieser J, Wonigeit K, Schwinzer R (1995) A point mutation in the human CD45 gene associated with defective splicing of exon A. Eur J Immunol 25:2101–2106Google Scholar
  120. 120.
    Zilch CF, Walker AM, Timon M, Goff LK, Wallace DL, Beverley PC (1998) A point mutation within CD45 exon A is the cause of variant CD45RA splicing in humans. Eur J Immunol 28:22–29Google Scholar
  121. 121.
    Zito F, Lowe GD, Rumley A, McMahon AD, Humphries SE (2002) Association of the factor XII 46C>T polymorphism with risk of coronary heart disease (CHD) in the WOSCOPS study. Atherosclerosis 165:153–158CrossRefPubMedGoogle Scholar
  122. 122.
    Tirado I, Manuel Soria J, Mateo J, Oliver A, Carlos Souto J, Santamaria A, Felices R, Borrell M, Fontcuberta J (2004) Association after linkage analysis indicates that homozygosity for the 46C->T polymorphism in the F12 gene is a genetic risk factor for venous thrombosis. Thromb Haemost 91:899–904PubMedGoogle Scholar
  123. 123.
    Kanaji T, Okamura T, Osaki K, Kuroiwa M, Shimoda K, Hamasaki N, Niho Y (1998) A common genetic polymorphism (46 C to T substitution) in the 5′-untranslated region of the coagulation factor XII gene is associated with low translation efficiency and decrease in plasma factor XII level. Blood 91:2010–2014PubMedGoogle Scholar
  124. 124.
    Kohler HP, Futers TS, Grant PJ (1999) FXII (46C->T) polymorphism and in vivo generation of FXII activity-gene frequencies and relationship in patients with coronary artery disease. Thromb Haemost 81:745–747PubMedGoogle Scholar
  125. 125.
    Zito F, Drummond F, Bujac SR, Esnouf MP, Morrissey JH, Humphries SE, Miller GJ (2000) Epidemiological and genetic associations of activated factor XII concentration with factor VII activity, fibrinopeptide A concentration, and risk of coronary heart disease in men. Circulation 102:2058–2062PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK

Personalised recommendations