Journal of Molecular Medicine

, Volume 82, Issue 7, pp 414–422

A new role for expressed pseudogenes as ncRNA: regulation of mRNA stability of its homologous coding gene

  • Yoshihisa Yano
  • Rintaro Saito
  • Noriyuki Yoshida
  • Atsushi Yoshiki
  • Anthony Wynshaw-Boris
  • Masaru Tomita
  • Shinji Hirotsune
Review

Abstract

We have earlier generated a mutant mouse in a course of making a transgenic line that exhibited interesting heterozygote phenotypes, which exhibited failure to thrive, severe bone deformities, and polycystic kidneys. This mutant mouse provided a clue to uncover a unique role of expressed pseudogenes. In this mutant the transgene was integrated into the vicinity of the expressing pseudogene of Makorin1 called Makorin1-p1. This insertion reduced transcription of the Makorin1-p1, resulting in destabilization of the Makorin1 mRNA in trans via a cis-acting RNA decay element within the 5′ region of Makorin1 that is homologous between Makorin1 and Makorin1-p1. These findings demonstrate a novel and specific regulatory role of an expressed pseudogene as well as functional significance for noncoding RNAs. Next, we developed an original algorithm to determine how many pseudogenes are expressed. Based on our examination 2–3% of human processed pseudogenes are expressed using the most strict criteria. Interestingly, the mouse has a much smaller proportion of expressed pseudogenes (0.5–1%). Pseudogenes are functionally less constrained, and have accumulated more mutations than translated genes. If they have some functions in gene regulation, this property would allow more rapid functional diversification than protein-coding genes. In addition, some genetic phenomena that exhibit incomplete penetrance might be attributed to “mutation” or “variation” of pseudogenes.

Keywords

Pseudogene ncRNA mRNA decay Junk DNA Evolution 

Abbreviations

EST

Expressed sequence tag

RNP

Ribonucleoprotein

UTR

Untranslated region

References

  1. 1.
    Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351PubMedGoogle Scholar
  2. 2.
    Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedGoogle Scholar
  3. 3.
    Waterston RH et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562CrossRefPubMedGoogle Scholar
  4. 4.
    Adams MD (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195CrossRefPubMedGoogle Scholar
  5. 5.
    The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018PubMedGoogle Scholar
  6. 6.
    Aparicio S et al (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310CrossRefPubMedGoogle Scholar
  7. 7.
    Salanoubat M (2000) Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature 408:820–822PubMedGoogle Scholar
  8. 8.
    Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M et al (2000) InterPro: an integrated documentation resource for protein families, domains and functional sites. Bioinformatics 16:1145–1150PubMedGoogle Scholar
  9. 9.
    Thomas JW (2003) Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424:788–793CrossRefPubMedGoogle Scholar
  10. 10.
    Okazaki Y (2002) Analysis of the mouse transcriptome based on functional annotation of 60:770 full-length cDNAs. Nature 420:563–573CrossRefPubMedGoogle Scholar
  11. 11.
    Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424:147–151CrossRefPubMedGoogle Scholar
  12. 12.
    Langkjaer RB, Cliften PF, Johnston M, Piskur J (2003) Yeast genome duplication was followed by asynchronous differentiation of duplicated genes. Nature 421:848–852CrossRefPubMedGoogle Scholar
  13. 13.
    Harrison PM, Gerstein M (2002) Studying genomes through the aeons: protein families, pseudogenes and proteome evolution. J Mol Biol 318:1155–1174CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang Z, Harrison PM, Liu L, Gerstein M (2003) Millions of years of evolution preserved: a comprehensive catalogue of the processed pseudogenes in the human genome. Genome Res 13:2541–2558CrossRefPubMedGoogle Scholar
  15. 15.
    Esnault C, Maestre J, Heidmann T (2000) Human LINE retrotransposons generate processed pseudogenes. Nat Genet 24:363–367CrossRefPubMedGoogle Scholar
  16. 16.
    Goncalves I, Duret L, Mouchiroud D (2000) Nature and structure of human genes that generate retropseudogenes. Genome Res 10:672–678PubMedGoogle Scholar
  17. 17.
    Maestre J, Tchenio T, Dhellin O, Heidmann T (1995) mRNA retroposition in human cells: processed pseudogene formation. EMBO J 14:6333–6338PubMedGoogle Scholar
  18. 18.
    Harrison PM, Hegyi H, Bertone P, Echols N, Johnson T, Balasubramanian S, Luscombe N, Gerstein M (2002) Molecular fossils in the human genome: identification and analysis of processed and non-processed pseudogenes in chromosomes 21 and 22. Genome Res 12:272–280Google Scholar
  19. 19.
    Harrison PM, Echols N, Gerstein MB (2001) Digging for dead genes: an analysis of the characteristics of the pseudogene population in the Caenorhabditis elegans genome. Nucleic Acids Res 29:818–830PubMedGoogle Scholar
  20. 20.
    Harrison PM, Milburn D, Zhang Z, Bertone P, Gerstein M (2003) Identification of pseudogenes in the Drosophila melanogaster genome. Nucleic Acids Res 31:1033–1037CrossRefPubMedGoogle Scholar
  21. 21.
    Homma K, Fukuchi S, Kawabata T, Ota M, Nishikawa K (2002) A systematic investigation identifies a significant number of probable pseudogenes in the Escherichia coli genome. Gene 294:25CrossRefPubMedGoogle Scholar
  22. 22.
    Vanin EF (1985) Processed pseudogenes: characteristics and evolution. Annu Rev Genet 19:253–272PubMedGoogle Scholar
  23. 23.
    Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson J (1994) Molecular biology of the cell. Garland, New YorkGoogle Scholar
  24. 24.
    Mighell AJ, Smith NR, Robinson PA, Markham AF (2000) Vertebrate pseudogenes. FEBS Lett 468:109–114PubMedGoogle Scholar
  25. 25.
    Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2 919–929Google Scholar
  26. 26.
    Erdmann VA, Szymanski M, Hochberg A, Groot N, Barciszewski J (2000) Non-coding, mRNA-like RNAs database Y2K. Nucleic Acids Res 28:197–200CrossRefPubMedGoogle Scholar
  27. 27.
    Erdmann VA, Barciszewska MZ, Szymanski M, Hochberg A, de Groot N, Barciszewski J (2001) The non-coding RNAs as riboregulators. Nucleic Acids Res 29:189–193CrossRefPubMedGoogle Scholar
  28. 28.
    Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351:153–155PubMedGoogle Scholar
  29. 29.
    Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J, Willard HF (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 1992 71:527–542Google Scholar
  30. 30.
    Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S, Rastan S (1992) The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71:515–526PubMedGoogle Scholar
  31. 31.
    Constancia M, Dean W, Lopes S, Moore T, Kelsey G, Reik W (2000) Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19. Nat Genet 26:203–206CrossRefPubMedGoogle Scholar
  32. 32.
    Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415:810–813PubMedGoogle Scholar
  33. 33.
    Hirotsune S, Yoshida N, Chen A, Garrett L, Sugiyama F, Takahashi S, Yagami K, Wynshaw-Boris A, Yoshiki A (2003) An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature 423:91–96CrossRefPubMedGoogle Scholar
  34. 34.
    Gray TA, Hernandez L, Carey AH, Schaldach MA, Smithwick MJ, Rus K, Marshall Graves JA, Stewart CL, Nicholls RD (2000) The ancient source of a distinct gene family encoding proteins featuring RING and C (3) H zinc-finger motifs with abundant expression in developing brain and nervous system. Genomics 25:14430–14435Google Scholar
  35. 35.
    Greally JM, Gray TA, Gabriel JM, Song L, Zemel, S, Nicholls RD (1999) Conserved characteristics of heterochromatin-forming DNA at the 15q11-q13 imprinting center. Proc Natl Acad Sci USA 25:14430–14435CrossRefGoogle Scholar
  36. 36.
    Zhang Z, Harrison P, Gerstein M (2002) Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome. Genome Res 12:1466–1482CrossRefPubMedGoogle Scholar
  37. 37.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedGoogle Scholar
  38. 38.
    Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197PubMedGoogle Scholar
  39. 39.
    Pearson WR (1991) Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms. Genomics 11:635–650PubMedGoogle Scholar
  40. 40.
    Jacobson A, Peltz SW (1996) Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem 65:693–739PubMedGoogle Scholar
  41. 41.
    Ross J (1995) mRNA stability in mammalian cells. Microbiol Rev 59:423–450PubMedGoogle Scholar
  42. 42.
    Vilela C, Velasco C, Ptushkina M, McCarthy JE (2000) The eukaryotic mRNA decapping protein Dcp1 interacts physically and functionally with the eIF4F translation initiation complex, EMBO J 19:4372–4382Google Scholar
  43. 43.
    Schwartz DC, Parker R (2000) mRNA decapping in yeast requires dissociation of the cap binding protein, eukaryotic translation initiation factor 4E. Mol Cell Biol 20:7933–7942CrossRefPubMedGoogle Scholar
  44. 44.
    Chen CY, You Y, Shyu AB (1992) Two cellular proteins bind specifically to a purine-rich sequence necessary for the destabilization function of a c-fos protein-coding region determinant of mRNA instability. Mol Cell Biol 12:5748–5757PubMedGoogle Scholar
  45. 45.
    Schiavi SC, Wellington CL, Shyu AB, Chen CY, Greenberg ME, Belasco JG (1994) Multiple elements in the c-fos protein-coding region facilitate mRNA deadenylation and decay by a mechanism coupled to translation. J Biol Chem 269:3441–3448PubMedGoogle Scholar
  46. 46.
    Chen CY, Xu N, Shyu AB (1995) mRNA decay mediated by two distinct AU-rich elements from c-fos and granulocyte-macrophage colony-stimulating factor transcripts: different deadenylation kinetics and uncoupling from translation. Mol Cell Biol 15:5777–5788PubMedGoogle Scholar
  47. 47.
    Palade GE (1955) A small particulate component of the cytoplasm. J Biophys Biochem Cytol 1:59–67PubMedGoogle Scholar
  48. 48.
    Crick FHC (1958) On protein synthesis. Symp Soc Exp Biol 12:138–163PubMedGoogle Scholar
  49. 49.
    Zieve GW (1981) Two groups of small stable RNAs. Cell 25:296–297PubMedGoogle Scholar
  50. 50.
    Busch H, Reddy R, Rothblum, L, Choi YC (1982) SnRNAs, SnRNPs, and RNA processing. Annu Rev Biochem 5:617–654CrossRefGoogle Scholar
  51. 51.
    Yu YT, Scharl EC, Smith CM, Steitz JA (1999) In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 487–524Google Scholar
  52. 52.
    Lerner MR, Steitz JA (1981) Snurps and scyrps. Cell 25:298–300PubMedGoogle Scholar
  53. 53.
    Burge CB, Tuschl T, Sharp PA (1999) In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 525–560Google Scholar
  54. 54.
    Kelley RL, Kuroda ML (2000) Noncoding RNA genes in dosage compensation and imprinting. Cell 103:9–12CrossRefPubMedGoogle Scholar
  55. 55.
    Avner P, Heard E (2001) X-chromosome inactivation: counting, choice and initiation. Nat Rev Genet 2:59–67PubMedGoogle Scholar
  56. 56.
    Franke A, Baker BS (2000) Dosage compensation rox! Curr Opin Cell Biol 12:351–354Google Scholar
  57. 57.
    Tilghman SM (1999) The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 96:185–193PubMedGoogle Scholar
  58. 58.
    Brannan CI, Bartolomei, M. S (1999) Mechanisms of genomic imprinting. Curr Opin Genet Dev 9:164–170Google Scholar
  59. 59.
    Meguro M, Mitsuyam K, Nomura N, Kohda M, Kashiwagi A, Nishigaki R, Yoshioka H, Nakao M, Oishi, M, Oshimura M (2001) Large-scale evaluation of imprinting status in the Prader-Willi syndrome region: an imprinted direct repeat cluster resembling small nucleolar RNA genes. Hum Mol Genet 10:383–394CrossRefPubMedGoogle Scholar
  60. 60.
    Cavaille J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, Bachellerie JP, Brosius, J, Huttenhofer A (2000) Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci USA 97:14311–14316CrossRefPubMedGoogle Scholar
  61. 61.
    Simons RW, Kleckner N (1988) Biological regulation by antisense RNA in prokaryotes. Annu Rev Genet 22:567–600CrossRefPubMedGoogle Scholar
  62. 62.
    Terryn N, Rouze P (2000) The sense of naturally transcribed antisense RNAs in plants. Trends Plant Sci 5:394–396Google Scholar
  63. 63.
    Erdmann VA, Barciszewska MZ, Hochberg A, De Groot N, Barciszewski J (2001) Regulatory RNAs. Cell Mol Life Sci 58:960–977PubMedGoogle Scholar
  64. 64.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedGoogle Scholar
  65. 65.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906PubMedGoogle Scholar
  66. 66.
    Sharp PA (2001) RNA interference—2001. Genes Dev 15:485–490PubMedGoogle Scholar
  67. 67.
    Vance V, Vaucheret H (2001) RNA silencing in plants—defense and counterdefense. Science 292:2277–2280CrossRefPubMedGoogle Scholar
  68. 68.
    Korneev SA, Park J-H, O’Shea M (1999) Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene.J Neurosci 19:7711–7720PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Yoshihisa Yano
    • 1
  • Rintaro Saito
    • 2
  • Noriyuki Yoshida
    • 3
  • Atsushi Yoshiki
    • 4
  • Anthony Wynshaw-Boris
    • 5
  • Masaru Tomita
    • 2
  • Shinji Hirotsune
    • 1
  1. 1.Department of Genetic Disease ResearchOsaka City University Graduate School of MedicineOsakaJapan
  2. 2.Institute for Advanced BiosciencesKeio UniversityYamagataJapan
  3. 3.Department of Chemical BiologyOsaka City University Graduate School of MedicineOsakaJapan
  4. 4.Experimental Animal Division, Department of Biological Systems, BioResource CenterRIKEN Tsukuba InstituteIbarakiJapan
  5. 5.Departments of Pediatrics and Medicine, UCSD Cancer Center, San Diego School of MedicineUniversity of CaliforniaLa JollaUSA

Personalised recommendations