Journal of Molecular Medicine

, Volume 82, Issue 6, pp 373–382 | Cite as

Duodenal HFE expression and hepcidin levels determine body iron homeostasis: modulation by genetic diversity and dietary iron availability

  • Susanne Ludwiczek
  • Igor Theurl
  • Erika Artner-Dworzak
  • Michael Chorney
  • Guenter Weiss
Original Article

Abstract

HFE affects the interaction of transferrin bound iron with transferrin receptors (TfR) thereby modulating iron uptake. To study genetically determined differences in HFE expression we examined individual HFE levels in C57BL/Sv129 mice and assessed their relationship to the regulation of iron homeostasis in the duodenum and the liver, and their regulation by diet. We found an up to 14-fold variation in inter-individual expression of HFE mRNA in the duodenum. Mice with high duodenal HFE mRNA expression presented with significantly higher levels of TfR and DMT-1 mRNAs and an increased IRP-1 binding affinity as compared to mice with low HFE levels. Duodenal HFE expression was positively associated with serum iron and liver HFE levels. Dietary iron supplementation decreased HFE in the duodenum but not in the liver. This was paralleled by reduced amounts of DMT-1 and FP-1 in the duodenum while the expression of DMT-1, FP-1, and hepcidin in the liver were increased with dietary iron overload. Duodenal and liver HFE levels are regulated by divergent penetration of as yet unelucidated modifier genes and to a much lesser extent by dietary iron. These measures control duodenal iron transport and liver iron homeostasis by modulating HFE expression either directly or via stimulation of iron sensitive regulatory molecules, such as hepcidin, which then exert their effects on body iron homeostasis.

Keywords

Hemochromatosis Iron absorption Iron transport Acute phase proteins 

Notes

Acknowledgements

The authors are grateful to Yukinori Yoshida for providing the monoclonal murine ant-HFE antibody, Klaus Schümann for giving advice on iron feeding of mice, and Markus Seifert for excellent technical assistance. This work was supported by grants from the Austrian National Bank, Project 8764 and by the Austrian Research Funds, FWF-14215 and 15943.

References

  1. 1.
    Hentze MW, Kühn LC (1996) Molecular control of vertebrate iron metabolism: mRNA based regulatory circuits operated by iron, nitric oxide and oxidative stress. Proc Natl Acad Sci USA 93:8175–8180PubMedGoogle Scholar
  2. 2.
    Rouault TA, Klausner R (1997) Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul 35:1–6PubMedGoogle Scholar
  3. 3.
    Eisenstein RS (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 20:227–262Google Scholar
  4. 4.
    Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, Dormishian F, Domingo R Jr, Ellis MC, Fullan A, Hinton LM, Jones NL, Kimmel BE, Kronmal GS, Lauer P, Lee VK, Loeb DB, Mapa FA, McClelland E, Meyer NC, Mintier GA, Moeller N, Moore T, Morikang E, Prass CE, Quintana L, Starnes SM, Schatzman RC, Brunke KJ, Drayna DT, Risch NJ, Bacon BR, Wolff RK (1996) A novel MHC class I-like gene is mutated in patients with hereditary hemochromatosis. Nat Genet 13:399–408PubMedGoogle Scholar
  5. 5.
    Fleming RE, Britton RS, Waheed A, Sly WS, Bacon BR (2002) HFE. In: Templeton DM (ed) Molecular and cellular iron transport, 1st edn. Dekker, New York, pp 189–205Google Scholar
  6. 6.
    Feder NJ, Penny DM, Irrinki A, Lee VK, Lebron JA, Watson N, Tsuchihashi Z, Sigal E, Bjorkman PJ, Schatzman RC (1998) The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc Natl Acad Sci USA 95:1472–1477CrossRefPubMedGoogle Scholar
  7. 7.
    Parkkila S, Waheed A, Britton RS, Bacon BR, Zhou XY, Tomatsu S, Fleming RE, Sly WS (1997) Association of the transferrin receptor in human placenta with HFE, the protein defective in hereditary hemochromatosis. Proc Natl Sci USA 94:13198–13202CrossRefGoogle Scholar
  8. 8.
    Zoller H, Pietrangelo A, Vogel W, Weiss G (1999) Duodenal metal transporter (DMT-1, NRAMP2) expression in patients with hereditary hemochromatosis. Lancet 353:2120–2123CrossRefPubMedGoogle Scholar
  9. 9.
    Fleming RE, Migas MC, Zhou XY, Jiang J, Britton RS, Brunt EM, Tomatsu S, Waheed A, Bacon BR, Sly WS (1999) Mechanism of increased iron absorption in murine model of hereditary hemochromatosis: Increased duodenal expression of the iron transporter DMT1. Proc Natl Acad Sci USA 96:3143–3148CrossRefPubMedGoogle Scholar
  10. 10.
    Zoller H, Koch RO, Theurl I, Obrist P, Pietrangelo A, Montosi G, Haile DJ, Vogel W, Weiss G (2001) Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology 120:1412–1419PubMedGoogle Scholar
  11. 11.
    Frazer DM, Wilkins SJ, Becker EM, Vulpe CD, McKie AT, Trinder D, Anderson GJ (2002) Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology 123:835–844CrossRefPubMedGoogle Scholar
  12. 12.
    Fleming RE, Sly WS (2002) Mechanism of iron accumulation in hereditary hemochromatosis. Annu Rev Physiol 64:663–680CrossRefPubMedGoogle Scholar
  13. 13.
    Andrews NC (1999) Disorders of iron metabolism. N Engl J Med 341:1986–1995CrossRefPubMedGoogle Scholar
  14. 14.
    Stuart KA, Anderson GJ, Frazer DM, Powell LW, McCullen M, Fletcher LM, Crawford DH (2003) Duodenal expression of iron transport molecules in untreated haemochromatosis subjects. Gut 52:953–959CrossRefPubMedGoogle Scholar
  15. 15.
    Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488CrossRefPubMedGoogle Scholar
  16. 16.
    McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A novel duodenal iron-regulated transporter, IREG-1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5:299–309PubMedGoogle Scholar
  17. 17.
    Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275:19906–19912CrossRefPubMedGoogle Scholar
  18. 18.
    Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–781CrossRefPubMedGoogle Scholar
  19. 19.
    Gunshin H, Allerson CR, Polycarpou-Schwarz M, Rofts A, Rogers JT, Kishi F, Hentze MW, Rouault TA, Andrews NC, Hediger MA (2001) Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett 509:309–316CrossRefPubMedGoogle Scholar
  20. 20.
    Tchernitchko D, Bourgeois M, Martin ME, Beaumont C (2002) Expression of the two isoforms of the iron transporter Nramp2/DMT1 in mice and function of the iron responsive element. Biochem J 363:449–455CrossRefPubMedGoogle Scholar
  21. 21.
    Zoller H, Theurl I, Koch R, Kaser A, Weiss G (2002) Mechanisms of iron mediated regulation of the duodenal iron transporters divalent metal transporter 1 and ferroportin 1. Blood Cells Mol Dis 29:488–497CrossRefPubMedGoogle Scholar
  22. 22.
    Bahram S, Gilfillan S, Kühn (1999) Experimental hemochromatosis due to MHC class I HFE deficiency: immune status and iron metabolism. Proc Natl Acad Sci USA 96:13312–13317CrossRefPubMedGoogle Scholar
  23. 23.
    Weiss G, Goossen B, Doppler W, Fuchs D, Pantopoulos K, Werner-Felmayer G, Wachter H, Hentze MW (1993) Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J 12:3651–3671PubMedGoogle Scholar
  24. 24.
    Leibold EA, Munro HN (1988) Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5′ untranslated region of heavy- and light subunit mRNAs. Proc Natl Sci USA 85:2171–2175Google Scholar
  25. 25.
    Weiss G, Umlauft F, Urbanek M, Herold M, Lovevsky M, Offner F, Gordeuk VR (1999) Associations between cellular immune effector function, iron metabolism, and disease activity in patients with chronic hepatic C virus infection. J Infect Dis 180:1452–1458CrossRefPubMedGoogle Scholar
  26. 26.
    Parkkila S, Parkkila AK, Waheed A, Britton RS, Zhou XY, et al (2000) Cell surface expression of HFE protein in epithelial cells, macrophages and monocytes. Haematologica 85:340–345PubMedGoogle Scholar
  27. 27.
    Byrnes V, Ryan E, O’Keane C, Crowe J (2000) Immunohistochemistry of the HFE protein in patients with hereditary hemochromatosis, iron deficiency anemia, and normal controls. Blood Cells Mol Dis 26:2–8CrossRefPubMedGoogle Scholar
  28. 28.
    Montosi G, Paglia P, Garuti C, Guzman CA, Bastin JM, Colombo MP, Pietrangelo A (2000)Wild-type HFE protein normalizes transferrin iron accumulation in macrophages from subjects with hereditary hemochromatosis. Blood 96:1125–1129PubMedGoogle Scholar
  29. 29.
    Drakesmith H, Sweetland E, Schimanski L, Edwards J, Cowley D, Ashraf M, Bastin J, Townsend AR (2002) The hemochromatosis protein HFE inhibits iron export from macrophages. Proc Natl Sci USA 99:15602–15607CrossRefGoogle Scholar
  30. 30.
    Lebrón JA, Bennet MJ, Vaughn DE, Chirino AJ, Snow PM, Mintier GA, Feder JN, Bjorkman PJ (1998) Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with the transferrin receptor. Cell 93:111–123PubMedGoogle Scholar
  31. 31.
    Zhou XY, Tomatsu S, Fleming RE, Parkkila S, Waheed A, Jiang J, Fei Y, Brunt E, Ruddy DA, Prass CE, Schatzman RC, O’Neill R, Britton RS, Bacon BR, Sly WS (1998) HFE gene knockout produces mouse model of hereditary hemochromatosis. Proc Natl Sci USA 95:2492–2497CrossRefGoogle Scholar
  32. 32.
    Levy JE, Montross LK, Cohen DE, Fleming MD, Andrews NC (1999) The C282Y mutation in hereditary hemochromatosis does not produce a null allele. Blood 94:9–11Google Scholar
  33. 33.
    Bahram S, Gilfillan S, Kühn LC, Moret R, Schulze JB, Lebeau A, Schümann K (1999) Experimental hemochromatosis due to MHC class I HFE deficiency: immune status and iron metabolism. Proc Natl Sci USA 96:13312–13317CrossRefGoogle Scholar
  34. 34.
    Levy JE, Montross LK, Andrews NC (2000) Genes that modify the hemochromatosis phenotype in mice. J Clin Invest 105:1209–1216PubMedGoogle Scholar
  35. 35.
    Fleming RE, Holden CC, Tomatsu S, Waheed A, Brunt EM, Britton RS, Bacon BR, Roopenian DC, Sly WS (2001) Mouse strain differences determine severity of iron accumulation in HFE knockout model of hereditary hemochromatosis. Proc Natl Sci USA 98:2707–2711CrossRefGoogle Scholar
  36. 36.
    Dupic F, Fruchon S, Bensaid M, Borot N, Radosavljevic M, Loreal O, Brissot P, Gilfillan S, Bahram S, Coppin H, Roth MP (2002) Inactivation of the hemochromatosis gene differentially regulates duodenal expression of iron-related mRNAs between mouse strains. Gastroenterology 122:745–751PubMedGoogle Scholar
  37. 37.
    Griffiths WJH, Sly WS, Cox TM (2001) Intestinal iron uptake determined by divalent metal transporter is enhanced in HFE-deficient mice with hemochromatosis. Gastroenterology 120:1420–1429PubMedGoogle Scholar
  38. 38.
    Canonne-Hergaux F, Levy JE, Fleming MD , Montross LK, Andrews NC, Gros P (2001) Expression of the DMT1 (NRAMP2/DCT1) iron transporter in mice with genetic iron overload disorders. Blood 97:1138–1140CrossRefPubMedGoogle Scholar
  39. 39.
    Roy CN, Penny DM, Feder JN, Enns CA (1999) The hereditary hemochromatosis protein, HFE, specifically regulates transferrin-mediated iron uptake in HeLa cells. J Biol Chem 274:9022–9028CrossRefPubMedGoogle Scholar
  40. 40.
    Lebron JA, West AP Jr, Bjorkman PJ (1999) The hemochromatosis protein HFE competes with transferrin binding to the transferrin receptor. J Mol Biol 294:239–245CrossRefPubMedGoogle Scholar
  41. 41.
    Riedel HD, Muckenthaler MU, Gehrke SG,, Mohr I, Brennan K, Hermann T, Fitscher BA, Hentze MW, Stremmel W (1999) HFE downregulates iron uptake from transferrin and induces iron-regulatory protein activity in stably transfected cells. Blood 94:3915–3921Google Scholar
  42. 42.
    Corsi B, Levi S, Cozzi A, Corti A, Altimare D, Albertini A, Arosio P (1999) Overexpression of the hereditary hemochromatosis protein, HFE, in HeLa cells induces an iron-deficient phenotype. FEBS Lett 460:149–152CrossRefPubMedGoogle Scholar
  43. 43.
    Roy CN, Carlson EJ, Anderson EL, Basava A, Starnes SM, Feder JN, Enns CA (2000) Interactions of the ectodomain of HFE with the transferrin receptor are critical for iron homeostasis in cells. FEBS Lett 484:271–274CrossRefPubMedGoogle Scholar
  44. 44.
    Roy CN, Blemings KP, Deck KM, Davies PS, Anderson EL, Eisenstein RS, Enns CA (2002) Increased IRP-1 and IRP-2 RNA binding activity accompanies a reduction of the labile iron pool in HFE expressing cells. J Cell Physiol 190:218–226CrossRefPubMedGoogle Scholar
  45. 45.
    Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276:7806–7810CrossRefPubMedGoogle Scholar
  46. 46.
    Krause A, Neitz S, Magert HJ, Forssmann WG, Schulz-Knappe P, Adermann K (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480:147–150CrossRefPubMedGoogle Scholar
  47. 47.
    Bridle KR, Frazer DM, Wilkins SJ, Dixon JL, Purdie DM, Crawford DH, Subramaniam VN, Powell LW, Anderson GJ, Ram GA (2003) Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homeostasis. Lancet 361:669–673CrossRefPubMedGoogle Scholar
  48. 48.
    Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, Loreal O (2001). A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276:7811–7819CrossRefPubMedGoogle Scholar
  49. 49.
    Nemeth E, Valore EV, Territo M, Sciller G, Lichtenstein A, Ganz T (2003) Hepcidin, a putative mediator of anemia of inflammation, is a class II acute-phase protein. Blood 101:2461–2463CrossRefPubMedGoogle Scholar
  50. 50.
    Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S (2001) Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Sci USA 98:8780–8785CrossRefGoogle Scholar
  51. 51.
    Sanchez M, Queralt R, Bruguera M, Rodes J, Oliva R (1998) Cloning, sequencing and characterization of the rat hereditary hemochromatosis promoter: comparison of the human, mouse and rat HFE promoter regions. Gene 225:77–87CrossRefPubMedGoogle Scholar
  52. 52.
    Roetto A, Papanikolaou G, Politou M, Alberti F, Girelli D, Christakis P, Loukopoulos D, Camaschella C (2003) Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 33:21–22CrossRefPubMedGoogle Scholar
  53. 53.
    Merryweather-Clarke AT, Cadet E, Bomford A, et al (2003) Digenic inheritance of mutations in HAMP and HFE results in different types of haemochromatosis. Hum Mol Genet 12:2241–2247CrossRefPubMedGoogle Scholar
  54. 54.
    Ganz T (2003) Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102:783–788CrossRefPubMedGoogle Scholar
  55. 55.
    Courselaud B, Pigeon C, Viatte L, et al (2002) C/EBP alpha regulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism. Cross-talk between C/EPB pathway and iron metabolism. J Biol Chem 277:41163–41170CrossRefPubMedGoogle Scholar
  56. 56.
    Nicolas G, Chauvet C, Viatte L, et al (2002) The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 110:1037–1044CrossRefPubMedGoogle Scholar
  57. 57.
    Muckenthaler M, Roy CN, Custodio AO, et al (2003) Regulatory defects in liver and intestine implicate abnormal hepcidin and Cybrd1 expression in mouse hemochromatosis. Nat Genet 34:102–107CrossRefPubMedGoogle Scholar
  58. 58.
    Nicolas G, Viatte L, Lou DQ, et al (2003) Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nat Genet 34:97–101CrossRefPubMedGoogle Scholar
  59. 59.
    Weinstein DA, Roy CN, Fleming MD, et al (2002) Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood 100:3776–3781CrossRefPubMedGoogle Scholar
  60. 60.
    Ilyin G, Courselaud B, Troadec MB, et al (2003) Comparative analysis of mouse hepcidin 1 and 2 genes: evidence for different patterns of expression and co-inducibility during iron overload. FEBS Lett 8:22–26CrossRefGoogle Scholar
  61. 61.
    Ahmad KA, Ahmann JR, Migas MC, et al (2002) Decreased liver hepcidin expression in the HFE knockout mouse. Blood Cells Mol Dis 29:361–366CrossRefPubMedGoogle Scholar
  62. 62.
    Fleming RE, Sly WS (2001) Hepcidin, a putative iron-regulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease. Proc Natl Acad Sci USA 98:8160–8162CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Susanne Ludwiczek
    • 1
  • Igor Theurl
    • 1
  • Erika Artner-Dworzak
    • 2
  • Michael Chorney
    • 3
  • Guenter Weiss
    • 1
  1. 1.Department of Internal MedicineUniversity of InnsbruckInnsbruckAustria
  2. 2.Department of Medical BiochemistryUniversity of InnsbruckInnsbruckAustria
  3. 3.Departments of Microbiology and ImmunologyPennsylvania State University College of MedicineHersheyUSA

Personalised recommendations