Journal of Molecular Medicine

, Volume 82, Issue 4, pp 214–222

Human genome research in China

Review
  • 71 Downloads

Abstract

Significant progress in human genome research has been made in China since 1994. This review aims to give a brief and incomplete introduction to the major research institutions and their achievements in human genome sequencing and functional genomics in medicine, with emphasis on the “1% Sequencing Project”, the generation of single nucleotide polymorphism and haplotype maps of the human genome, disease gene identification, and the molecular characterization of leukemia and other diseases. Chinese efforts towards the sequencing of pathogenic microbial genomes and of the rice (Oryza sativa ssp. Indica) genome are also described.

Keywords

Human genome Microbial genome Rice genome Human disease related genes 

References

  1. 1.
    International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedGoogle Scholar
  2. 2.
    Xia JH, Liu CY, Tang BS, Pan Q, Huang L, Dai HP, Zhang BR, Xie W, Hu DX, Zheng D, Shi XL, Wang DA, Xia K, Yu KP, Liao XD, Feng Y, Yang YF, Xiao JY, Xie DH, Huang JZ (1998) Mutations in the gene encoding gap junction proteinβ-3, associated with autosomal dominant hearing impairment. Nat Genet 20:370–373CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang XH, Zhao J, Li CF, Gao S, Qiu CC, Liu P, Wu GY, Qiang BQ, Lo Wilson HY, Shen Y (2001) DSPP mutation in dentinogenesis imperfecta Shields type II. Nat Genet 27:151–152CrossRefPubMedGoogle Scholar
  4. 4.
    Xiao SX, Yu C, Chou XM, Yuan WJ, Wang Y, Bu L, Fu G, Qian MQ, Yang J, Shi YZ, Hu LD, Han B, Wang ZM, Huang W, Liu J, Chen Z, Zhao GP, Kong XY (2001) Dentinogenesis imperfecta I with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat Genet 27:201–204CrossRefPubMedGoogle Scholar
  5. 5.
    Yang X, She CW, Guo JZ, Yu CH, Lu YJ, Shi XL, Feng GY, He L (2000) A locus for brachydactyly type A-1 maps to chromosome 2q35–36. Am J Hum Genet 66:892–903Google Scholar
  6. 6.
    Gao B, Guo JZ, She CW, Shu AL, Yang MS, Tan Z, Yang XP, Guo SZ, Feng GY, He L (2001) Mutations in IHH, encoding the Indian hedgehog protein, cause brachydactyly type A-1. Nat Genet 28:386–388Google Scholar
  7. 7.
    Bu L, Jin YP, Shi YF, Chu RY, Ban AR, Eiberg H, Andres L, Jiang HS, Zheng GY, Qian MQ, Cui B, Xia Y,Liu J, Hu LD, Zhao GP, Hayden MR, Kong XY (2002) Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataracts. Nat Genet 31:276–278CrossRefPubMedGoogle Scholar
  8. 8.
    Amir RE, van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding a methyl-CpG-binding protein. Nat Genet 23:165–188Google Scholar
  9. 9.
    Pan H, Wang YP, Bao XH, Meng HD, Zhang Y, Wu XR, Shen Y (2002) MECP2 gene mutation analysis in Chinese patients with Rett syndrome. Eur J Hum Genet 10:484–486CrossRefPubMedGoogle Scholar
  10. 10.
    Chen YC, Lo JJ, Pan H, Zhang YH, Wu HS, Xu KM, Liu XY, Jiang YW, Bao XH, Yao ZJ, Ding KY, Lo Wilson HY, Qiang BQ, Chan P, Shen Y, Wu XR (2003) Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 54:239–243CrossRefPubMedGoogle Scholar
  11. 11.
    Chen YH, Xu SJ, Bendahhou S, Wang XL, Wang Y, Xu WY, Jin HW, Sun H, Su XY, Zhuang QN, Yang YQ, Li YB, Liu Y, Xu HJ, Li XF,Ma N, Mou CP, Chen Z, Barhanin J, Huang W (2003) KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299:251–254CrossRefPubMedGoogle Scholar
  12. 12.
    Wang H, Zhao S, Zhao W, Feng G, Jiang S, Liu W, Li S, Xue H, He L (2000) Congenital absence of permanent teeth in a six-generation Chinese kindred. Am J Med Genet 90:193–198CrossRefPubMedGoogle Scholar
  13. 13.
    Liu W, Wang H, Zhao S, Zhao W, Bai S, Zhao Y, Xu S, Wu C, Huang W, Chen Z, Feng G, He L (2001) The novel gene locus for agenesis of permanent teeth (He-Zhao deficiency) maps to chromosome 10q11.2. J Dent Res 80:1716–1720PubMedGoogle Scholar
  14. 14.
    Xia K, Deng H, Xia JH, Zheng D, Zhang HL, Lu CY, Li CQ, Pan Q, Dai HP, Yang YF, Long ZG, Deng HX (2002) A novel locus (DSAP2) for disseminated superficial actinic porokeratosis maps to chromosome 15q25.1–26.1. Br J Dermatol 147:650–654CrossRefPubMedGoogle Scholar
  15. 15.
    Chen Z, Wang ZY (2000) Acute promyelocytic leukemia. In: Pui CH (ed) Current clinical oncology. Treatment of acute leukemia: new directions of clinical research. Humana Press, Totowa, pp 291–308Google Scholar
  16. 16.
    Warrell RP Jr, de The H, Wang ZY, Degos L (1993) Acute promyelocytic leukemia. N Engl J Med 329:177–189PubMedGoogle Scholar
  17. 17.
    Chen SJ, Zhu YJ, Tong JH, et al (1991) Rearrangements in the second intron of the RARA gene are present in a large majority of patients with acute promyelocytic leukemia and are used as molecular marker for retinoic acid-induced leukemic cell differentiation. Blood 78:2696–2701PubMedGoogle Scholar
  18. 18.
    Chen Z, Chen SJ, Tong JH, et al (1991) The retinoic acid alpha receptor gene is frequently disrupted in its 5′ region in Chinese patients with acute promyelocytic leukemia. Leukemia 5:288–292PubMedGoogle Scholar
  19. 19.
    Tong JH, Dong S, Geng JP, et al (1992) Molecular rearrangements of the MYL gene in acute promyelocytic leukemia (APL, M3) define a breakpoint cluster region as well as some molecular variants. Oncogene 7:311–316PubMedGoogle Scholar
  20. 20.
    Chen Z, Chen SJ (1992) RARA and PML genes in acute promyelocytic leukemia. Leuk Lymphoma 8:253–260PubMedGoogle Scholar
  21. 21.
    Gu BW, Xiong H, Zhou Y, et al (2002) Variant-type PML-RAR(alpha) fusion transcript in acute promyelocytic leukemia: use of a cryptic coding sequence from intron 2 of the RAR(alpha) gene and identification of a new clinical subtype resistant to retinoic acid therapy. Proc Natl Acad Sci USA 99:7640–7645CrossRefPubMedGoogle Scholar
  22. 22.
    Chen SJ, Zelent A, Tong JH, et al (1993) Rearrangements of the retinoic acid receptor alpha and promyelocytic leukemia zinc finger genes resulting from t(11;17)(q23;q21) in a patient with acute promyelocytic leukemia. J Clin Invest 91:2260–2267PubMedGoogle Scholar
  23. 23.
    Chen Z, Brand NJ, Chen A, et al (1993) Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J 12:1161–1167PubMedGoogle Scholar
  24. 24.
    Zhang T, Xiong H, Kan LX, et al (1999) Genomic sequence, structural organization, molecular evolution, and aberrant rearrangement of promyelocytic leukemia zinc finger gene. Proc Natl Acad Sci USA 96:11422–11427CrossRefPubMedGoogle Scholar
  25. 25.
    Chen Z, Guidez F, Rousselot P, et al (1994) PLZF-RAR alpha fusion proteins generated from the variant t(11;17)(q23;q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors. Proc Natl Acad Sci USA 91:1178–1182PubMedGoogle Scholar
  26. 26.
    Cheng GX, Zhu XH, Men XQ, et al (1999) Distinct leukemia phenotypes in transgenic mice and different co-repressor interactions generated by promyelocytic leukemia variant fusion genes PLZF-RARalpha and NPM-RARalpha. Proc Natl Acad Sci USA 96:6318–6323CrossRefPubMedGoogle Scholar
  27. 27.
    Liu TX, Zhang JW, Tao J, et al (2000) Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells. Blood 96:1496–1504PubMedGoogle Scholar
  28. 28.
    Chen SJ, Wang Q, Tong JH, et al (1991) Monoallelic deletions of the p53 gene in Chinese patients with chronic myelogenous leukemia in blastic crisis. Nouv Rev Fr Hematol 33:481–484PubMedGoogle Scholar
  29. 29.
    Su XY, Wong N, Cao Q, et al (1999) Chromosomal aberrations during progression of chronic myeloid leukemia identified by cytogenetic and molecular cytogenetic tools: implication of 1q12–21. Cancer Genet Cytogenet 108:6–12CrossRefPubMedGoogle Scholar
  30. 30.
    Gu BW, Wang Q, Wang JM, et al (2003) Major form of NUP98/HOXC11 fusion in adult AML with t(11;12)(p15;q13) translocation exhibits aberrant trans-regulatory activity. Leukemia (in press)Google Scholar
  31. 31.
    Ooi EE, Ren EC, Chan SH (1997) Association between microsatellites within the human MHC and nasopharyngeal carcinoma. Int J Cancer 74:229–232CrossRefPubMedGoogle Scholar
  32. 32.
    Feng BJ, Huang W, Shugart YY, et al (2002) Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4. Nat Genet 31:395–399PubMedGoogle Scholar
  33. 33.
    Wang G, Zhao Y, Liu X, Wang L, Wu C, Zhang W, Liu W, Zhang P, Cong W, Zhu Y, Zhang L, Chen S, Wan D, Zhao X, Huang W, Gu J (2001) Allelic loss and gain, but not genomic instability, as the major somatic mutation in primary hepatocellular carcinoma. Genes Chromosomes Cancer 31:221–227CrossRefPubMedGoogle Scholar
  34. 34.
    Zhao XT, He M, Wan DF, Ye Y, He YH, Han LW, Guo ML, Huang Y, Qin WX, Wang MW, Chong WM, Chen JG, Zhang LH, Yang NW, Xu BH, Wu MC, Zuo L, Gu JR (2003) The minimum LOH region defined on chromosome 17p13.3 in human hepatocellular carcinoma by gene content analysis. Cancer Lett 190:221–232CrossRefPubMedGoogle Scholar
  35. 35.
    Zhao X, Li J, He Y, Lan F, Fu L, Guo J, Zhao R, Ye Y, He M, Chong W, Chen J, Zhang L, Yang N, Xu B, Wu M, Wan D, Du J (2001) A novel growth suppressor gene on chromosome 17p13.3 with a high frequency of mutation in human hepatocellular carcinoma. Cancer Res 61:7383–7387PubMedGoogle Scholar
  36. 36.
    Xu J, de Zhu J, Ni M, Wan F, Gu RJ (2002) The ATF/CREB site is the key element for transcription of the human RNA methyltransferase like 1 (RNMTL1) gene, a newly discovered 17p13.3 gene. Cell Res 12:177–179PubMedGoogle Scholar
  37. 37.
    Xu XR, Huang J, Xu ZG, Qian BZ, Zu ZD, Yan Q, Cai T, Zhang X, Xiao HS, Qu J, Liu F, Huang QH, Cheng ZH, Li NG, Du GG, Hu W, Shen KT, Lu G, Fu G, Zhong M, Xu SH, Gu WY, Huang W, Zhao XT, Hu GX, Gu JR, Chen Z, Han ZG (2001) Insight into hepatocellular carcinogenesis at the transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci USA 98:15089–15094CrossRefPubMedGoogle Scholar
  38. 38.
    Wei F, Ni J, Wu SS, Liu H, Xu X, Han YL, Cai Y, Zhang JW, Chen XJ, Pang H, Lu N, Ji L, Wu M, Wang MR (2002) Cytogenetic studies of esophageal squamous cell carcinomas in a northern Chinese population by comparative genomic hybridization. Cancer Genet Cytogenet 138:38–43CrossRefPubMedGoogle Scholar
  39. 39.
    Huang XP, Wei F, Liu XY, Xu X, Hu H, Chen BS, Xia SH, Han YS, Han YL, Cai Y, Wu M, Wang MR (2002) Allelic loss on 13q in esophageal squamous cell carcinomas from northern China. Cancer Lett 185:87–94CrossRefPubMedGoogle Scholar
  40. 40.
    Chen BS, Wang MR, Xu X, Cai Y, Xu ZX, Han YL, Wu M (2000) Transglutaminase 3 - an esophageal cancer related gene. Int J Cancer 88:862–865CrossRefPubMedGoogle Scholar
  41. 41.
    Chen BS, Wang MR, Cai Y, Xu X, Xu ZX, Han YL, Wu M (2000) Decreased expression of the SPRR3 gene in Chinese human esophageal cancer. Carcinogenesis 21:2147–2150CrossRefPubMedGoogle Scholar
  42. 42.
    Chen BS, Xu ZX, Xu X, Cai Y, Han YL, Wang J, Xia SH, Hu H, Wei F, Wu M, Wang MR (2002): RhCG is down-regulated in esophageal squamous cell carcinomas but expressed in multiple differentiated squamous epithelia. Eur J Cancer 38:1927–1936CrossRefPubMedGoogle Scholar
  43. 43.
    Xu ZX, Wang MR, Xu X, Cai Y, Han YL, Wu KM, Wang J, Chen BS, Wang XQ, Wu M (2000) Human esophagus-specific novel gene C1orf10: cDNA cloning, gene structure and frequent loss of expression in esophageal cancer. Genomics 69:322–330CrossRefPubMedGoogle Scholar
  44. 44.
    Zhou J, Wang HX, Luo AP, Ding F, Zhang J, Wang XQ, Wu M, Liu ZH (2002) A novel gene, NMES1, down-regulated in human esophageal squamous cell carcinoma. Int J Cancer 101:311–316CrossRefPubMedGoogle Scholar
  45. 45.
    Wang N, Liu ZH, Ding F, Wang XQ, Zhou CN, Wu M (2002) Down-regulation of gut-enriched Krupple-like factor expression in esophageal cancer. World J Gastroenterol 8:966–970PubMedGoogle Scholar
  46. 46.
    Wang Q, Yang CB, Zhou J, Wang XQ, Wu M, Liu ZH (2001) Cloning and characterization of theEC45 gene which encodes human ribosomal protein L15 and is overexpressed in esophageal cancer. Gene 263:205–209CrossRefPubMedGoogle Scholar
  47. 47.
    Xia SH, Hu LP, Hu H, Ying WT, Xu X, Cai Y, Han YL, Chen BS, Wei F, Qian XH, Cai YY, Shen Y, Wu M, Wang MR (2002) Three isoforms of annexin I are preferentially expressed in normal esophageal epithelia but dysregulated in esophageal squamous cell carcinomas. Oncogene 21:6641–6648CrossRefPubMedGoogle Scholar
  48. 48.
    Hu H, Xia SH, Li AD, Xu X, Cai Y, Han YL, Wei F, Chen BS, Huang XP, Han YS, Zhang JW, Zhang X, Wu M, Wang MR (2002) Elevated expression of p63 protein in human esophageal squamous cell carcinoma. Int J Cancer 102:580–583CrossRefPubMedGoogle Scholar
  49. 49.
    Du WN, Sun HX, Wang H, Qiang BQ, Shen Y, Yao ZJ, Gu J, Xiong MM, Huang W, Chen Z, Zuo J, Hua XF, Gao W, Sun Q, Fang FD (2001) Confirmation of susceptibility gene loci on chromosome 1 in Northern Chinese Han families with type 2 diabetes. Chin Med J 114:876–878PubMedGoogle Scholar
  50. 50.
    Sun HX, Zhang KX, Du WN, Shi JX, Jiang ZW, Sun H, Zuo J, Huang W, Chen Z, Shen Y, Yao ZJ, Qiang BQ, Fang FD (2002) Single nucleotide polymorphisms in CAPN10 in Chinese people and their correlation with type 2 diabetes mellitus in the Han people of northern China. Biomed Environ Sci 15:75–82PubMedGoogle Scholar
  51. 51.
    Sun HX, Du WN, Zuo J, Wu GD, Shi GB, Shen Y, Qiang BQ, Yao ZJ, Hang JM, Wang H, Huang W, Chen Z, Fang FD (2002) The association of two single nucleotide polymorphisms in the protein kinase Cξsubunit gene (PRKCZ) and the urotensin gene (UTSII) respectively with type-2 diabetes in the Han people of northern China. Acta Acad Med Sin 24:223–227Google Scholar
  52. 52.
    Niu TH, Xu XP, Cordell HJ, Rogus J, Zhou YS, Fang ZA, Lindpaintner K (1999) Linkage analysis of candidate genes and gene-gene interactions in Chinese hypertensive sib pairs. Hypertension 33:1332–1337PubMedGoogle Scholar
  53. 53.
    Xu P, Rogus JJ, Terwedow HA, Yang JH, Wang ZX, Chen CZ, et al (1999) An extreme-sib-pair genome scan for genes regulating blood pressure. Am J Hum Genet 64:1694–1701CrossRefPubMedGoogle Scholar
  54. 54.
    Zhu DL, Wang HY, Xiong MM, He X, Chu SL, Jin L, et al (2001) Linkage of hypertension to chromosome 2q14-q23 in Chinese families. J Hypertens 19:55–61CrossRefPubMedGoogle Scholar
  55. 55.
    Zhu DL, Huang W, Chu SL, Wang GL, He X, et al (2002) Linkage analysis of a region on chromosome 2 with essential hypertension in Chinese families. Chin Med J 115:654–657PubMedGoogle Scholar
  56. 56.
    Chu SL, Zhu DL, Wang GL, Zhang WZ, Zhou HF, Gao PJ, Zhan YM, et al (2002) Linkage analysis of twelve candidate gene loci regulating water and sodium metabolism and membrane ion transport in essential hypertension. Hypertens Res 25:635–639CrossRefPubMedGoogle Scholar
  57. 57.
    Pan WH, Chen JW, Fann C, Jou YS, Wu SY (2000) Linkage analysis with candidate genes: the Taiwan early-onset hypertension genetic study. Hum Genet 107:210–215CrossRefPubMedGoogle Scholar
  58. 58.
    Ge DL, Yang WJ, Huang JF, Yao CL, Xu XH, Gan WQ, Zhao JG, Liu DH, Wang XL, Duan XF, Hui RT, Shen Y, Yao ZJ, Qiang BQ, Gu DF (2003) Linkage analysis of 2q14-q23 and 5q32 with blood pressure quantitative traits in Chinese sib pairs. J Hypertens 21:305–310CrossRefPubMedGoogle Scholar
  59. 59.
    Yang WJ, Huang JF, Ge DL, Yao CL, Duan XF, Gan WQ, Huang GY, Zhao JG, Hui RT, Shen Y, Qiang BQ, Gu DF (2003) Variation near the region of the lipoprotein lipase gene and hypertension or blood pressure level in Chinese. Hypertens Res 26:459–464PubMedGoogle Scholar
  60. 60.
    Yang WJ, Huang JF, Yao CL, Fan ZJ, Ge DL, Gan WQ, Huang GY, Hui RT, Shen Y, Qiang BQ, Gu DF (2003) Evidence for linkage and association of the markers near the LPL gene with hypertension in Chinese families. J Med Genet 40:1–6CrossRefPubMedGoogle Scholar
  61. 61.
    Mao M, Fu G, Wu JS, et al (1998) Identification of genes expressed in human CD34+ hematopoietic stem/progenitor cells by expressed sequence tags and efficient full-length cDNA cloning. Proc Natl Acad Sci USA 95:8175–8180CrossRefPubMedGoogle Scholar
  62. 62.
    Zhang W, Wan T, Yuan Z, He L, Zhu X, Yu M, Cao X (2001) Genetic approach to insight into the immunobiology of human dendritic cells and identification of CD84-H1, a novel CD84 homologue. Clin Cancer Res 7:822s-829sPubMedGoogle Scholar
  63. 63.
    Hu RM, Han ZG, Song HD, Peng YD, Huang QH, Ren SX, Gu YJ, Huang CH, Li YB, Jiang CL, Fu G, Zhang QH, Gu BW, Dai M, Mao YF, Gao GF, Rong R, Ye M, Zhou J, Xu SH, Gu J, Shi JX, Jin WR, Zhang CK, Wu TM, Huang GY, Chen Z, Chen MD, Chen JL (2000) Gene expression profiling in the human hypothalamus-pituitary-adrenal axis and full-length cDNA cloning. Proc Natl Acad Sci USA 97:9543–9548CrossRefPubMedGoogle Scholar
  64. 64.
    Yu YT, Zhang CG, Zhou GQ, Wu SF, Xu XH, Wei HD, Xing GC, Dong CN, Zhai Y, Wan HD, Ouyang SG, Li L, Zhang SW, Zhou KX, Zhang YN, Wu CT, He FC (2001) Gene expression profiling in human fetal liver and identification of tissue- and developmental stage-specific genes through compared expression profiles and cloning of full-length cDNAs. Genome Res 11:1392–1403Google Scholar
  65. 65.
    Zhang QH, Ye M, Wu XY, et al (2000) Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells. Genome Res 10:1546–1560CrossRefPubMedGoogle Scholar
  66. 66.
    Han ZG, Zhang QH, Ye M, et al (1999) Molecular cloning of six novel Kruppel-like zinc finger genes from hematopoietic cells and identification of a novel transregulatory domain KRNB. J Biol Chem 274:35741–35748CrossRefPubMedGoogle Scholar
  67. 67.
    Gu J, Zhang QH, Huang QH, et al (2000) Gene expression in CD34+ cells from normal bone marrow and leukemic origins. Hematol J 1:206–217CrossRefPubMedGoogle Scholar
  68. 68.
    Jin Q, Yuan ZH, Xu JG, et al (2002) Genome sequence of Shigella flexneri 2a:insights into pathogenicity through comparison with genomes of E.coli K12 and O157. Nucl Acids Res 30:4432–4441CrossRefGoogle Scholar
  69. 69.
    Ren SX, Fu G, Jiang XG, et al (2003) Unique physiological and pathogenic features of Leptospia interrogans revealed by whole-genome sequencing. Nature 422:888–893CrossRefPubMedGoogle Scholar
  70. 70.
    Bao QY, et al (2002) A complete sequence of the T. tengcongensis genome. Genome Res 12:689–700CrossRefPubMedGoogle Scholar
  71. 71.
    Qin ED, Zhu QY, Yu M, et al (2003) A complete sequence and comparative analysis of a SARS-associated virus (Isolate BJ01). Chin Sci Bull 48:941–948CrossRefGoogle Scholar
  72. 72.
    Feng Q, Zhang Y, Hao P (2002) Sequence and analysis of rice chromosome 4. Nature 420:316–320CrossRefPubMedGoogle Scholar
  73. 73.
    Yu J, Hu SN, Wang J, et al ( 2002) A draft sequence of the rice genome(Oryza sativa L. ssp. indica). Science 296:79–92PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.State Key Laboratory of Medical Molecular BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina

Personalised recommendations