Journal of Molecular Medicine

, Volume 82, Issue 1, pp 39–48

Iron overload in adult Hfe-deficient mice independent of changes in the steady-state expression of the duodenal iron transporters DMT1 and Ireg1/ferroportin

  • Thomas Herrmann
  • Martina Muckenthaler
  • Frank van der Hoeven
  • Karen Brennan
  • Sven G. Gehrke
  • Nadia Hubert
  • Consolato Sergi
  • Hermann-Josef Gröne
  • Iris Kaiser
  • Isabella Gosch
  • Martin Volkmann
  • Hans-Dieter Riedel
  • Matthias W. Hentze
  • A. Francis Stewart
  • Wolfgang Stremmel
Original Article


Patients suffering from hereditary hemochromatosis (HH) show progressive iron overload as a consequence of increased duodenal iron absorption. It has been hypothesized that mutations in the HH gene HFE cause misprogramming of the duodenal enterocytes towards a paradoxical iron-deficient state, resulting in increased iron transporter expression. Previous reports concerning gene expression levels of the duodenal iron transporters DMT1 and IREG1 in HH patients and animal models are controversial, however, and in many cases only mRNA expression levels were investigated. To analyze the duodenal expression of DMT1, Ireg1, Dcytb, and hephaestin and the association with iron overload in adult Hfe−/− mice, an Hfe−/− mouse line was generated. Duodenal DMT1 and Ireg1 protein levels, duodenal DMT1, Ireg1, Dcytb, hephaestin, and TfR1 mRNA levels, and hepatic hepcidin mRNA levels were quantified and the correlation to liver iron contents was calculated. We report that duodenal DMT1 and Ireg1 mRNA levels and DMT1 and Ireg1 protein levels remained unaffected by the Hfe deletion. Furthermore, duodenal hephaestin and TfR1 mRNA expression and hepatic hepcidin mRNA expression remained unaltered, while the duodenal mRNA expression of the brush border ferric reductase Dcytb was significantly increased in Hfe−/− mice. We found no correlation between the expression level of any of the analyzed transcripts and the liver iron content. In conclusion, the lack of correlation between DMT1 and Ireg1 protein expression and the liver iron content suggests that elevated duodenal iron transporter expression is not required for high liver iron overload. Hfe−/− mice do not necessarily display features of iron deficiency in the duodenum, indicated by an increase in mRNA and protein levels of DMT1 and Ireg1. Rather, the duodenal ferric reductase Dcytb may act as a possible mediator of iron overload in Hfe deficiency.


Duodenal cytochrome b DMT1 Hemochromatosis Hepcidin HFE Ireg1 



Duodenal cytochrome b


Divalent metal ion transporter 1


Fatty acid transport protein 4


FLP recombinase target


Hereditary hemochromatosis


Iron-responsive element


Iron-regulated transporter 1


Keyhole limpet hemocyanin


Reverse transcriptase


Transferrin receptor 1


  1. 1.
    Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, Dormishian F, Domingo R Jr, Ellis MC, Fullan A, Hinton LM, Jones NL, Kimmel BE, Kronmal GS, Lauer P, Lee VK, Loeb DB, Mapa FA, McClelland E, Meyer NC, Mintier GA, Moeller N, Moore T, Morikang E, Wolff RK et al. (1996) A novel MHC class I-like gen is mutated in patients with hereditary haemochromatosis. Nat Genet 13:399–408PubMedGoogle Scholar
  2. 2.
    Waheed A, Parkkila S, Saarnio J, Fleming RE, Zhou XY, Tomatsu S, Britton RS, Bacon BR, Sly WS (1999) Association of HFE protein with transferrin receptor in crypt enterocytes of human duodenum. Proc Natl Acad Sci USA 96:1579–1584CrossRefPubMedGoogle Scholar
  3. 3.
    Zhou XY, Tomatsu S, Fleming RE, Parkkila S, Waheed A, Jiang J, Fei Y, Brunt EM, Ruddy DA, Prass CE, Schatzman RC, O’Neill R, Britton RS, Bacon BR, Sly WS (1998) HFE gene knockout produces mouse model of hereditary hemochromatosis. Proc Natl Acad Sci USA 95:2492–2497CrossRefPubMedGoogle Scholar
  4. 4.
    Bahram S, Gilfillan S, Kuhn LC, Moret R, Schulze JB, Lebeau A, Schumann K (1999) Experimental hemochromatosis due to MHC class I HFE deficiency: immune status and iron metabolism. Proc Natl Acad Sci USA 96:13312–13317CrossRefPubMedGoogle Scholar
  5. 5.
    Levy JE, Montross LK, Cohen DE, Fleming MD, Andrews NC (1999) The C282Y mutation causing hereditary hemochromatosis does not produce a null allele. Blood 94:9–11PubMedGoogle Scholar
  6. 6.
    McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters TJ, Raja KB, Shirali S, Hediger MA, Farzaneh F, Simpson RJ (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291:1755–1759CrossRefPubMedGoogle Scholar
  7. 7.
    Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488CrossRefPubMedGoogle Scholar
  8. 8.
    Hubert N, Hentze MW (2002) Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: Implications for regulation and cellular function. Proc Natl Acad Sci USA 99:12345–12350CrossRefPubMedGoogle Scholar
  9. 9.
    McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5:299–309PubMedGoogle Scholar
  10. 10.
    Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–781CrossRefPubMedGoogle Scholar
  11. 11.
    Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275:19906–19912CrossRefPubMedGoogle Scholar
  12. 12.
    Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 21:195–199CrossRefPubMedGoogle Scholar
  13. 13.
    Bothwell TH, Van Doorn-Wittkampf H, Van W, Du Preez ML, Alper T (1953) The absorption of iron. Radioiron studies in idiopathic hemochromatosis, malnutrition cytopsiderosis, and transfusional hemosiderosis. J Lab Clin Med 41:836–842PubMedGoogle Scholar
  14. 14.
    Lebron JA, Bennett MJ, Vaughn DE, Chirino AJ, Snow PM, Mintier GA, Feder JN, Bjorkman PJ (1998) Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with transferrin receptor. Cell 93:111–123PubMedGoogle Scholar
  15. 15.
    Lebron JA, Bjorkman PJ (1999) The transferrin receptor binding site on HFE, the class I MHC-related protein mutated in hereditary hemochromatosis. J Mol Biol 289:1109–1118CrossRefPubMedGoogle Scholar
  16. 16.
    Lebron JA, West AP Jr, Bjorkman PJ (1999) The hemochromatosis protein HFE competes with transferrin for binding to the transferrin receptor. J Mol Biol 294:239–245CrossRefPubMedGoogle Scholar
  17. 17.
    Riedel HD, Muckenthaler MU, Gehrke SG, Mohr I, Brennan K, Herrmann T, Fitscher BA, Hentze MW, Stremmel W (1999) HFE downregulates iron uptake from transferrin and induces iron-regulatory protein activity in stably transfected cells. Blood 94:3915–3921PubMedGoogle Scholar
  18. 18.
    Roy CN, Carlson EJ, Anderson EL, Basava A, Starnes SM, Feder JN, Enns CA (2000) Interactions of the ectodomain of HFE with the transferrin receptor are critical for iron homeostasis in cells. FEBS Lett 484:271–274CrossRefPubMedGoogle Scholar
  19. 19.
    West AP Jr, Giannetti AM, Herr AB, Bennett MJ, Nangiana JS, Pierce JR, Weiner LP, Snow PM, Bjorkman PJ (2001) Mutational analysis of the transferrin receptor reveals overlapping HFE and transferrin binding sites. J Mol Biol 313:385–397CrossRefPubMedGoogle Scholar
  20. 20.
    Wang J, Chen G, Pantopoulos K (2003) The hemochromatosis protein HFE induces an apparent iron-deficient phenotype in H1299 cells that is not corrected by co-expression of beta2-microglobulin. Biochem J 370:891–899CrossRefPubMedGoogle Scholar
  21. 21.
    Griffiths WJ, Sly WS, Cox TM (2001) Intestinal iron uptake determined by divalent metal transporter is enhanced in HFE-deficient mice with hemochromatosis. Gastroenterology 120:1420–1429PubMedGoogle Scholar
  22. 22.
    Trinder D, Olynyk JK, Sly WS, Morgan EH (2002) Iron uptake from plasma transferrin by the duodenum is impaired in the Hfe knockout mouse. Proc Natl Acad Sci USA 99:5622–5626CrossRefPubMedGoogle Scholar
  23. 23.
    Zoller H, Koch RO, Theurl I, Obrist P, Pietrangelo A, Montosi G, Haile DJ, Vogel W, Weiss G (2001) Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology 120:1412–1419Google Scholar
  24. 24.
    Dupic F, Fruchon S, Bensaid M, Loreal O, Brissot P, Borot N, Roth MP, Coppin H (2002) Duodenal mRNA expression of iron related genes in response to iron loading and iron deficiency in four strains of mice. Gut 51:648–653CrossRefPubMedGoogle Scholar
  25. 25.
    Fleming RE, Migas MC, Zhou X, Jiang J, Britton RS, Brunt EM, Tomatsu S, Waheed A, Bacon BR, Sly WS (1999) Mechanism of increased iron absorption in murine model of hereditary hemochromatosis: increased duodenal expression of the iron transporter DMT-1. Proc Natl Acad Sci USA 96:3143–3148CrossRefPubMedGoogle Scholar
  26. 26.
    Zoller H, Pietrangelo A, Vogel W, Weiss G (1999) Duodenal metal-transporter (DMT-1, NRAMP-2) expression in patients with hereditary haemochromatosis. Lancet 353:2120–2123CrossRefPubMedGoogle Scholar
  27. 27.
    Canonne-Hergaux F, Levy JE, Fleming MD, Montross LK, Andrews NC, Gros P (2001) Expression of the DMT-1 (NRAMP2/DCT1) iron transporter in mice with genetic iron overload disorders. Blood 97:1138–1140CrossRefPubMedGoogle Scholar
  28. 28.
    Fleming RE, Holden CC, Tomatsu S, Waheed A, Brunt EM, Britton RS, Bacon BR, Roopenian DC, Sly WS (2001) Mouse strain differences determine severity of iron accumulation in Hfe knockout model of hereditary hemochromatosis. Proc Natl Acad Sci USA 98:2707–2711CrossRefPubMedGoogle Scholar
  29. 29.
    Dupic F, Fruchon S, Bensaid M, Borot N, Radosavljevic M, Loreal O, Brissot P, Gilfillan S, Bahram S, Coppin H, Roth MP (2002) Inactivation of the hemochromatosis gene differentially regulates duodenal expression of iron-related mRNAs between mouse strains. Gastroenterology 122:745–751PubMedGoogle Scholar
  30. 30.
    Rolfs A, Bonkovsky HL, Kohlroser JG, McNeal K, Sharma A, Berger UV, Hediger MA (2002) Intestinal expression of genes involved in iron absorption in humans. Am J Physiol Gastrointest Liver Physiol 282:G598–G607PubMedGoogle Scholar
  31. 31.
    Ganz T (2003) Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102:783–788CrossRefPubMedGoogle Scholar
  32. 32.
    Muckenthaler M, Roy CN, Custodio ÁO, Miñana B, deGraaf J, Montross LK, Andrews NC, Hentze MW (2003) Regulatory defects in liver and intestine implicate abnormal hepcidin and Dcytb expression in murine hemochromatosis. Nat Genet 34:102–107CrossRefPubMedGoogle Scholar
  33. 33.
    Gehrke SG, Kulaksiz H, Herrmann T, Riedel HD, Bents K, Veltkamp C, Stremmel W (2003) Expression of hepcidin in hereditary hemochromatosis: evidence for a regulation in response to serum transferrin saturation and non-transferrin-bound iron. Blood 102:371–376CrossRefPubMedGoogle Scholar
  34. 34.
    Ahmad KA, Ahmann JR, Migas MC, Waheed A, Britton RS, Bacon BR, Sly WS, Fleming RE (2002) Decreased liver hepcidin expression in the hfe knockout mouse. Blood Cells Mol Dis 29:361–366CrossRefPubMedGoogle Scholar
  35. 35.
    Bridle KR, Frazer DM, Wilkins SJ, Dixon JL, Purdie DM, Crawford DH, Subramaniam VN, Powell LW, Anderson GJ, Ram GA (2003) Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361:669–673CrossRefPubMedGoogle Scholar
  36. 36.
    Nicolas G, Viatte L, Lou D, Bennoun M, Beaumont C, Kahn A, Andrews NC, Vaulont S (2003) Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nat Genet 34:97–101CrossRefPubMedGoogle Scholar
  37. 37.
    Kaestner KH, Hiemisch H, Luckow B, Schutz G (1994) The HNF-3 gene family of transcription factors in mice: gene structure, cDNA sequence, and mRNA distribution. Genomics 20:377–385CrossRefPubMedGoogle Scholar
  38. 38.
    Sambrook J, Russell D (2000) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  39. 39.
    Riegert P, Gilfillan S, Nanda I, Schmid M, Bahram S (1998) The mouse HFE gene. Immunogenetics 47:174–177CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang Y, Buchholz F, Muyrers JPP, Stewart AF (1998) A new logic for DNA engineering using recombination in E. coli. Nat Genet 20:123–128CrossRefPubMedGoogle Scholar
  41. 41.
    Angrand P-O, Daigle N, van der Hoeven F, Schoeler HR, Stewart AF (1999) Simplified generation of targeting constructs using ET recombination. Nucleic Acids Res 27:e16PubMedGoogle Scholar
  42. 42.
    Zhang Y, Muyrers JP, Testa G, Stewart AF (2000) DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol 18:1314–1317PubMedGoogle Scholar
  43. 43.
    Schwenk F, Baron U, Rajewsky K (1995) A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res 23:5080–5081PubMedGoogle Scholar
  44. 44.
    Sergi C, Himbert U, Weinhardt F, Heilmann W, Meyer P, Beedgen B, Zilow E, Hofmann WJ, Linderkamp O, Otto HF (2001) Hepatic failure with neonatal tissue siderosis of hemochromatotic type in an infant presenting with meconium ileus. Pathol Res Pract 197:699–709PubMedGoogle Scholar
  45. 45.
    Ajioka RS, Levy JE, Andrews NC, Kushner JP (2002) Regulation of iron absorption in Hfe mutant mice. Blood 100:1465–1469CrossRefPubMedGoogle Scholar
  46. 46.
    Lebeau A, Frank J, Biesalski HK, Weiss G, Srai SK, Simpson RJ, McKie AT, Bahram S, Gilfillan S, Schumann K (2002) Long-term sequelae of HFE deletion in C57BL/6×129/O1a mice, an animal model for hereditary haemochromatosis. Eur J Clin Invest 32:603–612CrossRefPubMedGoogle Scholar
  47. 47.
    Simpson RJ, Debnam E, Beaumont N, Bahram S, Schumann K, Srai SK (2003) Duodenal mucosal reductase in wild-type and Hfe knockout mice on iron adequate, iron deficient, and iron rich feeding. Gut 52:510–513CrossRefPubMedGoogle Scholar
  48. 48.
    Raja KB, Pountney D, Bomford A, Przemioslo R, Sherman D, Simpson RJ, Williams R, Peters TJ (1996) A duodenal mucosal abnormality in the reduction of Fe (III) in patients with genetic haemochromatosis. Gut 38:765–769PubMedGoogle Scholar
  49. 49.
    Cardoso CS, de Sousa M (2003) HFE, the MHC and hemochromatosis: paradigm for an extended function for MHC class I. Tissue Antigens 61:263–275CrossRefPubMedGoogle Scholar
  50. 50.
    Montosi G, Paglia P, Garuti CA, Guzman CA, Bastin JM, Colombo MP, Pietrangelo A (2000) Wild-type HFE protein normalizes transferrin iron accumulation in macrophages from subjects with hereditary hemochromatosis. Blood 96:1125–1129PubMedGoogle Scholar
  51. 51.
    Moura E, Noordermeer MA, Verhoeven N, Verheul AFM, Marx JJM (1998) Iron release from human monocytes after erythrophagocytosis in vitro: an investigation in normal subjects and hereditary hemochromatosis patients. Blood 92:2511–2519PubMedGoogle Scholar
  52. 52.
    Drakesmith H, Sweetland E, Schimanski L, Edwards J, Cowley D, Ashraf M, Bastin J, Townsend ARM (2002) The hemochromatosis protein HFE inhibits iron export from macrophages. Proc Natl Acad Sci USA 99:15602–15607CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Thomas Herrmann
    • 1
  • Martina Muckenthaler
    • 2
  • Frank van der Hoeven
    • 3
  • Karen Brennan
    • 2
  • Sven G. Gehrke
    • 1
  • Nadia Hubert
    • 2
  • Consolato Sergi
    • 4
  • Hermann-Josef Gröne
    • 3
  • Iris Kaiser
    • 1
  • Isabella Gosch
    • 1
  • Martin Volkmann
    • 5
  • Hans-Dieter Riedel
    • 1
  • Matthias W. Hentze
    • 2
  • A. Francis Stewart
    • 6
  • Wolfgang Stremmel
    • 1
  1. 1.Department of Internal Medicine IVUniversity of HeidelbergHeidelbergGermany
  2. 2.European Molecular Biology LaboratoryHeidelbergGermany
  3. 3.German Cancer Research CenterHeidelbergGermany
  4. 4.Department of Paediatric PathologySt. Michael’s University HospitalBristolUK
  5. 5.Central LaboratoryUniversity of HeidelbergHeidelbergGermany
  6. 6.BiotecTechnical University of DresdenDresdenGermany

Personalised recommendations