Journal of Molecular Medicine

, Volume 81, Issue 11, pp 708–717 | Cite as

A novel transfecting peptide comprising a tetrameric nuclear localization sequence

  • Wolfgang Ritter
  • Christian Plank
  • James Lausier
  • Carsten Rudolph
  • Daniela Zink
  • Dietrich Reinhardt
  • Joseph Rosenecker
Original Article


The transport of exogenous DNA into the nucleus of eukaryotic cells is a prerequisite for successful gene delivery. To favor nuclear transport we synthesized a tetramer of the nuclear localization signal (NLS) of the SV40 large T-antigen as a novel nonviral gene delivery vector. This 4.4-kDa lysine-rich peptide (NLSV404) binds and compacts DNA by electrostatic interaction and forms stable polyplexes. Apart from its sequence-specific potency to mediate nuclear accumulation of conjugated albumin, NLSV404 also displays properties of nuclear transport for plasmid DNA as confirmed by fluorescence in situ hybridization. Further, NLSV404 polyplexes are shown to efficiently transfect various cell lines such as 16HBE14o–, HeLa S6, and Cos7 cells. NLSV404 polyplexes displayed at least 20-fold higher transfection rates than analogous polyplexes formed by the nuclear transport-deficient mutant sequence cNLS. Using growth-arrested cells, NLSV404 complexes were at least 100-fold more efficient than cNLS complexes. Combination of NLSV404 peptide but not of cNLS peptide with preformed polyethylenimine and dendrimer DNA complexes resulted in a strong increase in transfection efficiency. Incubation of cells prior to transfection with NLSV404 polyplexes with excess free peptide NLSV404 but not with cNLS resulted in a dose-dependent dramatic decrease in the transfection rate, suggesting a sequence-specific competitive inhibition. These results indicate that NLSV404 mediates nuclear accumulation of transfected plasmid DNA and that it can be a highly useful component of nonviral gene vectors.


Nuclear localization signal Gene therapy Nuclear transport Nonviral gene transfer Gene delivery 



Fluorescence-labeled bovine serum albumin


Enhanced green fluorescent protein


Fluorescent in situ hybridization


Nuclear localization signal




Simian virus 40



We thank the Förderverein für mukoviszidosekranke Kinder und Jugendliche der Region Ulm e.V. for financial support to purchase a fluorescence microscope. This work was supported by grants from the Bundesministerium für Bildung und Forschung, Bonn, Germany (01 GE9617/9, 01 GE0002, and 01 KV9554/1) and by the Deutsche Forschungsgemeinschaft (RO994/2–1).


  1. 1.
    Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ (1995) Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 270:18997–19007PubMedGoogle Scholar
  2. 2.
    Pollard H, Remy JS, Loussouarn G, Demolombe S, Behr JP, Escande D (1998) Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem 273:7507–7511CrossRefPubMedGoogle Scholar
  3. 3.
    Brunner S, Sauer T, Carotta S, Cotten M, Saltik M, Wagner E (2000) Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther 7:401–407CrossRefPubMedGoogle Scholar
  4. 4.
    Brunner S, Furtbauer E, Sauer T, Kursa M, Wagner E (2002) Overcoming the nuclear barrier: cell cycle independent nonviral gene transfer with linear polyethylenimine or electroporation. Mol Ther 5:80–86CrossRefPubMedGoogle Scholar
  5. 5.
    Gorlich D, Mattaj IW (1996) Nucleocytoplasmic transport. Science 271:1513–1518PubMedGoogle Scholar
  6. 6.
    Nigg EA (1997) Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386:779–787CrossRefPubMedGoogle Scholar
  7. 7.
    Jans DA, Hubner S (1996) Regulation of protein transport to the nucleus: central role of phosphorylation. Physiol Rev 76:651–685PubMedGoogle Scholar
  8. 8.
    Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39:499–509PubMedGoogle Scholar
  9. 9.
    Goldfarb DS, Gariepy J, Schoolnik G, Kornberg RD (1986) Synthetic peptides as nuclear localization signals. Nature 322:641–644PubMedGoogle Scholar
  10. 10.
    Richardson WD, Roberts BL, Smith AE (1986) Nuclear location signals in polyoma virus large-T. Cell 44:77–85PubMedGoogle Scholar
  11. 11.
    Ciolina C, Byk G, Blanche F, Thuillier V, Scherman D, Wils P (1999) Coupling of nuclear localization signals to plasmid DNA and specific interaction of the conjugates with importin alpha. Bioconjug Chem 10:49–55CrossRefPubMedGoogle Scholar
  12. 12.
    Sebestyen MG, Ludtke JJ, Bassik MC et al (1998) DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA. Nat Biotechnol 16:80–85PubMedGoogle Scholar
  13. 13.
    Zanta MA, Belguise-Valladier P, Behr JP (1999) Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA 96:91–96PubMedGoogle Scholar
  14. 14.
    Kalderon D, Richardson WD, Markham AF, Smith AE (1984) Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311:33–38PubMedGoogle Scholar
  15. 15.
    Schermelleh L, Solovei I, Zink D, Cremer T (2001) Two-color fluorescence labeling of early and mid-to-late replicating chromatin in living cells. Chromosome Res 9:77–80PubMedGoogle Scholar
  16. 16.
    Ernst N, Ulrichskotter S, Schmalix WA et al (1999) Interaction of liposomal and polycationic transfection complexes with pulmonary surfactant. J Gene Med 1:331–340CrossRefPubMedGoogle Scholar
  17. 17.
    Collas P, Alestrom P (1998) Nuclear localization signals enhance germline transmission of a transgene in zebrafish. Transgenic Res 7:303–309CrossRefPubMedGoogle Scholar
  18. 18.
    Plank C, Tang MX, Wolfe AR, Szoka FCJ (1999) Branched cationic peptides for gene delivery: role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes. Hum Gene Ther 10:319–332CrossRefPubMedGoogle Scholar
  19. 19.
    Plank C, Oberhauser B, Mechtler K, Koch C, Wagner E (1994) The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J Biol Chem 269:12918–12924PubMedGoogle Scholar
  20. 20.
    Gorlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660Google Scholar
  21. 21.
    Clamme JP, Azoulay J, Mely Y (2003) Monitoring of the formation and dissociation of polyethylenimine/DNA complexes by two photon fluorescence correlation spectroscopy. Biophys J 84:1960–1968PubMedGoogle Scholar
  22. 22.
    Radler JO, Koltover I, Salditt T, Safinya CR (1997) Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275:810–814CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Wolfgang Ritter
    • 1
  • Christian Plank
    • 2
  • James Lausier
    • 1
  • Carsten Rudolph
    • 1
  • Daniela Zink
    • 3
  • Dietrich Reinhardt
    • 1
  • Joseph Rosenecker
    • 1
  1. 1.Division of Molecular Pulmonology, Department of PediatricsLudwig-Maximilians-UniversitätMunichGermany
  2. 2.Institute of Experimental OncologyTechnische UniversitätMunichGermany
  3. 3.Institute of Anthropology and Human GeneticsLudwig-Maximilians-UniversitätMunichGermany

Personalised recommendations