Journal of Molecular Medicine

, Volume 81, Issue 8, pp 502–510 | Cite as

Codelivery of a DNA vaccine and a protein vaccine with aluminum phosphate stimulates a potent and multivalent immune response

  • Marcin Kwissa
  • Erik B. Lindblad
  • Reinhold Schirmbeck
  • Joerg Reimann
Original Article


The study explores the possibility of efficiently codelivering DNA vaccines and protein-based vaccines by formulation with aluminum phosphate (AlPO4). When mixed with aluminum adjuvants, plasmid DNA bound tightly onto aluminum hydroxide [Al(OH)3] but not to AlPO4. Different doses of DNA vaccines formulated with AlPO4 [but not Al(OH)3] induced enhanced humoral responses and supported priming of MHC class I restricted cellular immunity. Different proteins mixed with the plasmid DNA vaccine in the AlPO4 formulation did not impair its immunogenicity. Coinjection of two different vaccine-relevant antigens in the same AlPO4 formulation, one as a DNA vaccine and the other as a recombinant protein, elicited polyvalent, humoral, and cellular immune responses to all antigens delivered. The isotype profiles of the induced humoral responses and the cytokine profiles of the specifically primed T cell responses indicated that the combined vaccines supported copriming of Th1- and Th2-biased as well as balanced responses. These findings indicate that the AlPO4 adjuvant, a widely accepted adjuvant in human vaccination practice, can be used to combine protein- and DNA-based vaccination to prime an enhanced and balanced specific immunity.


DNA vaccination Aluminum adjuvants Polyvalent vaccines 



Cytotoxic T lymphocyte


Hepatitis B core antigen


Hepatitis B surface antigen


Hen egg lysozyme




Monoclonal antibody


  1. 1.
    Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application and optimization. Annu Rev Immunol 18:927–974PubMedGoogle Scholar
  2. 2.
    Letvin NL, Barouch DH, Montefiori DC (2002) Prospects for vaccine protection against HIV-1 infection and AIDS. Annu Rev Immunol 20:73–99CrossRefPubMedGoogle Scholar
  3. 3.
    Thomson SA, Sherritt MA, Medveczky J, et al (1998) Delivery of multiple CD8 cytotoxic T cell epitopes by DNA vaccination. J Immunol 160:1717–1723PubMedGoogle Scholar
  4. 4.
    Wang R, Doolan DL, Le TP, et al (1998) Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 282:476–480CrossRefPubMedGoogle Scholar
  5. 5.
    Chen Y, Takimoto T, Liu L, Surman S, Woodland DL (1999) DNA vaccination as a tool to identify subdominant CD8 T cell epitopes. Vaccine 18:720–727CrossRefPubMedGoogle Scholar
  6. 6.
    Hassett DE, Slifka MK, Zhang J, Whitton JL (2000) Direct ex vivo kinetic and phenotypic analyses of CD8+ T-cell responses induced by DNA immunization. J Virol 74:8286–9821CrossRefPubMedGoogle Scholar
  7. 7.
    Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects Annu Rev Immunol 20:709–760CrossRefGoogle Scholar
  8. 8.
    Ulmer JB, DeWitt CM, Chastain M, et al (1999) Enhancement of DNA vaccine potency using conventional aluminum adjuvants. Vaccine 18:18–28CrossRefPubMedGoogle Scholar
  9. 9.
    Wang S, Liu X, Fisher K, et al (2000) Enhanced type I immune response to a hepatitis B DNA vaccine by formulation with calcium- or aluminum phosphate. Vaccine 18:1227–1235CrossRefPubMedGoogle Scholar
  10. 10.
    Ishikawa T, Kono DH, Fowler P, Theofilopoulos AN, Kakumu S, Chisari FV (1998) Polyclonality and multispecificity of the CTL response to a single viral epitope. J Immunol 161:5842–5580PubMedGoogle Scholar
  11. 11.
    Riedl P, Stober D, Oehninger C, Melber K, Reimann J, Schirmbeck R (2002) Priming Th1 immunity to viral core particles is facilitated by trace amounts of RNA bound to its arginine-rich domain. J Immunol 168:4951–4959PubMedGoogle Scholar
  12. 12.
    Kwissa M, von Kampen v, Zurbriggen R, Gluck R, Reimann J, Schirmbeck R (2000) Efficient vaccination by intradermal or intramuscular inoculation of plasmid DNA expressing hepatitis B surface antigen under desmin promoter/enhancer control Vaccine 18:2337–2344Google Scholar
  13. 13.
    Riedl P, Buschle M, Reimann J, Schirmbeck R (2002) Binding immune-stimulating oligonucleotides to cationic peptides from viral core antigen enhances their potency as adjuvants. Eur J Immunol 32:1709–1716CrossRefPubMedGoogle Scholar
  14. 14.
    Riedl P, El Kholy S, Reimann J, Schirmbeck R (2002) Priming biologically active antibody responses against an isolated, conformational viral epitope by DNA vaccination. J Immunol 169:1251–1260PubMedGoogle Scholar
  15. 15.
    Davis HL, Schirmbeck R, Reimann J, Whalen RG (1995) DNA-mediated immunization in mice induces a potent MHC class I-restricted cytotoxic T lymphocyte response to the hepatitis B envelope protein. Hum Gene Ther 6:1447–1456PubMedGoogle Scholar
  16. 16.
    Schirmbeck R, Boehm W, Ando K-I, Chisari FV, Reimann J (1995) Nucleic acid vaccination primes hepatitis B surface antigen-specific cytotoxic T lymphocytes in nonresponder mice. J Virol 69:5929–5934PubMedGoogle Scholar
  17. 17.
    Böhm W, Kuhröber A, Paier T, Mertens T, Reimann J, Schirmbeck R (1996) DNA vector constructs that prime hepatitis B surface antigen-specific cytotoxic T lymphocyte and antibody responses in mice after intramuscular injection. J Immunol Methods 193:29–40PubMedGoogle Scholar
  18. 18.
    Krieg AM, Love HL, Yi AK, Harty JT (1998) CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J Immunol 161:2428–2434PubMedGoogle Scholar
  19. 19.
    Boehm W, Kuhröber A, Paier T, Mertens T, Reimann J, Schirmbeck R (1996) DNA vector constructs that prime hepatitis B surface antigen-specific cytotoxic T lymphocyte and antibody responses in mice after intramuscular injection. J Immunol Methods 193:29–40PubMedGoogle Scholar
  20. 20.
    Dillon SB, Demuth SG, Schneider MA, et al (1992) Induction of protective class I MHC-restricted CTL in mice by a recombinant influenza vaccine in aluminium hydroxide adjuvant. Vaccine 10:309–318CrossRefPubMedGoogle Scholar
  21. 21.
    Carson DA, Raz E (1997) Oligonucleotide adjuvants for T helper 1 (Th1)-specific vaccination. J Exp Med 186:1621–1622CrossRefPubMedGoogle Scholar
  22. 22.
    Chu RS, Targoni OS, Krieg AM, Lehmann PV, Harding CV (1997) CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J Exp Med 186:1623–1631PubMedGoogle Scholar
  23. 23.
    Schirmbeck R, Reimann J (1999) Enhancing the immunogenicity of exogenous hepatitis B surface antigen-based vaccines for MHC-I-restricted T cells. Biol Chem 380:285–291PubMedGoogle Scholar
  24. 24.
    Walker PS, Scharton KT, Krieg AM, et al (1999) Immunostimulatory oligodeoxynucleotides promote protective immunity and provide systemic therapy for leishmaniasis via IL-12- and IFN-γ-dependent mechanisms. Proc Natl Acad Sci USA 96:6970–6975CrossRefPubMedGoogle Scholar
  25. 25.
    Mosmann TR, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17:138–146PubMedGoogle Scholar
  26. 26.
    Carter LL, Dutton RW (1996) Type 1 and type 2: a fundamental dichotomy for all T-cell subsets. Curr Opin Immunol 8:336–342CrossRefPubMedGoogle Scholar
  27. 27.
    Romagnani S (1997) The Th1/Th2 paradigm. Immunol Today 18:263–266CrossRefPubMedGoogle Scholar
  28. 28.
    Colonna M (2001) Can we apply the TH1-TH2 paradigm to all lymphocytes? Nat Immunol 2:899–900Google Scholar
  29. 29.
    Ismail N, Bretscher PA (1999) The Th1/Th2 nature of concurrent immune responses to unrelated antigens can be independent. J Immunol 163:4842–4850PubMedGoogle Scholar
  30. 30.
    Reimann J, Schirmbeck R (2000) Modulating specific priming of immune effector functions by DNA-based vaccination strategies. Dev Biol (Basel) 104:15–24Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Marcin Kwissa
    • 1
  • Erik B. Lindblad
    • 2
  • Reinhold Schirmbeck
    • 1
  • Joerg Reimann
    • 1
  1. 1.Institute for Medical MicrobiologyUniversity of UlmUlmGermany
  2. 2.Brenntag BiosectorFrederikssundDenmark

Personalised recommendations