Journal of Molecular Medicine

, Volume 80, Issue 9, pp 545–548 | Cite as

JMM — Past and Present

Chromosomes and cancer: Theodor Boveri’s predictions 100 years later
  • Volker Wunderlich


  1. 1.
    Sager R (1983) Genomic rearrangements and the origin of cancer. In: German J (ed) Chromosome mutation and neoplasia. Liss, New York, pp 333–346Google Scholar
  2. 2.
    Boveri T (1902) Über mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verh Phys Med Gesellschaft Würzburg 35:67–90Google Scholar
  3. 3.
    Boveri T (1964) On multipolar mitosis as a means to analyse the cell nucleus. In: Willier BH, Oppenheimer J (ed) Foundations of experimental embryology. Prentice-Hall, New York (English translation of ref 2)Google Scholar
  4. 4.
    Surridge C (2001) Nature milestones: chromosomes to the fore Scholar
  5. 5.
    Boveri T (1914) Zur Frage der Entstehung maligner Tumoren. Fischer, JenaGoogle Scholar
  6. 6.
    Boveri T (1929) The origin of malignant tumors. Williams and Wilkins, Baltimore; Baillière, Tindall & Cox, LondonGoogle Scholar
  7. 7.
    Hansemann D von (1890) Über asymmetrische Zelltheilung in Epithelkrebsen und deren biologische Bedeutung. Virchows Arch Pathol Anat 119:299–326CrossRefGoogle Scholar
  8. 8.
    Hansemann D von (1906) Über pathologische Mitosen. Virchows Arch Pathol Anat 123:356–370CrossRefGoogle Scholar
  9. 9.
    Bishop JM (1995) Cancer: the rise of the genetic paradigm. Genes Dev 9:1309–1315CrossRefPubMedGoogle Scholar
  10. 10.
    Anders F (1991) Contributions of the Gordon-Kosswig melanoma system to the present concept of neoplasia. Pigment Cell Res 3:7–29CrossRefGoogle Scholar
  11. 11.
    Mitelman F, Johansson B, Mertens F (1998) Catalog of chromosome aberrations in cancer, 5th edn. CD-ROM version with annual updates. Wiley, New YorkGoogle Scholar
  12. 12.
    Anonymous (2002) Mitelman database of chromosome aberrations in cancer. Mitelman F, Johansson B, Mertens F (eds)
  13. 13.
    Weber BL (2002) Cancer genomics. Cancer Cell 1:37–47CrossRefPubMedGoogle Scholar
  14. 14.
    Doxsey S (2001) Re-evaluating centrosome function. Nat Rev Mol Cell Biol 2:688–698CrossRefPubMedGoogle Scholar
  15. 15.
    Brinkley BR (2001) Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol 11:18–21CrossRefPubMedGoogle Scholar
  16. 16.
    Marx J (2001) Cell biology. Do centrosome abnormalities lead to cancer? Science 292:426–429CrossRefPubMedGoogle Scholar
  17. 17.
    Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649CrossRefPubMedGoogle Scholar
  18. 18.
    Lingle WL, Barrett SL, Negron VC, D’Assoro AB, Boeneman K, Liu W, Whitehead CM, Reynolds C, Salisbury JL (2002) Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 99:1978–1983CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111CrossRefPubMedGoogle Scholar
  20. 20.
    Schwab M (ed) (2001) Encyclopedic reference of cancer. Springer, Berlin Heidelberg New YorkGoogle Scholar
  21. 21.
    Balmain A (2001) Cancer genetics: from Boveri and Mendel to microarrays. Nat Rev Cancer 1:77–82CrossRefPubMedGoogle Scholar
  22. 22.
    Wunderlich V (2002) Krebs–von Hippokrates bis zur molekularen Medizin. Einige wichtige Etappen auf einem langen Weg. In. Ganten D, Ruckpaul K (eds) Molekularmedizinische Grundlagen von nicht-hereditären Tumorerkrankungen. Springer, Berlin Heidelberg New York, pp 405–425CrossRefGoogle Scholar
  23. 23.
    Jahn I (1990) Grundzüge der Biologiegeschichte. Fischer, Jena 24. Muller HJ (1927) Arteficial transmutation of the gene. Science 66:84–87Google Scholar
  24. 25.
    Tyzzer EE (1916) Tumor immunity. J Cancer Res 1:125–155Google Scholar
  25. 26.
    Bauer KH (1928) Mutationstheorie der Geschwulstentstehung. Springer, BerlinCrossRefGoogle Scholar
  26. 27.
    Nowell PC, Hungerford DA (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132:1497Google Scholar
  27. 28.
    Loeb LA, Springgate CF, Battula N (1974) Errors in DNA replication as a basis of malignant changes. Cancer Res 34:2311–2321PubMedGoogle Scholar
  28. 29.
    Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999) Creation of human tumour cells with defined genetic elements. Nature 400:464–468CrossRefPubMedGoogle Scholar
  29. 30.
    Stehelin D, Varmus HE, Bishop JM, Vogt PK (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170–173CrossRefPubMedGoogle Scholar
  30. 31.
    Schwab M, Alitalo K, Varmus HE, Bishop JM, George D (1983) A cellular oncogene (c-Ki-ras) is amplified, overexpressed, and located within karyotypic abnormalities in mouse adrenocortical tumour cells. Nature 303:497–501CrossRefPubMedGoogle Scholar
  31. 32.
    Charles DR, Luce-Clausen EM (1942) The kinetics of papilloma formation in benzpyrene-treated mice. Cancer Res 2:261–263Google Scholar
  32. 33.
    Harris H, Miller OJ, Klein G, Worst P, Tachibana T (1969) Suppression of malignancy by cell fusion. Nature 223:363–368CrossRefPubMedGoogle Scholar
  33. 34.
    Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823CrossRefPubMedPubMedCentralGoogle Scholar
  34. 35.
    Stanbridge EJ, Flandermeyer RR, Daniels DW, Nelson-Rees WA (1981) Specific chromosome loss associated with the expression of tumorigenicity in human cell hybrids. Somatic Cell Genet 7:699–712CrossRefPubMedGoogle Scholar
  35. 36.
    Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie, BL, Murphree AL, Strong LC, White RL (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305:779–784CrossRefPubMedGoogle Scholar
  36. 37.
    Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–646CrossRefPubMedGoogle Scholar
  37. 38.
    Hartwell LH, Mortimer RK, Culotti J, Culotti M (1973) Genetic control of the cell cycle in yeast. V. Genetic analysis of cdc mutants. Genetics 74:267–286PubMedPubMedCentralGoogle Scholar
  38. 39.
    Pardee AB (1974) A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci USA 71:1286–1290CrossRefPubMedPubMedCentralGoogle Scholar
  39. 40.
    Nurse P, Bisset Y (1981) Gene required for G1 for commitment to cell cycle and in G2 for control of mitosis in fission yeast. Nature 292:558–560CrossRefPubMedGoogle Scholar
  40. 41.
    Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33: 389–396CrossRefPubMedGoogle Scholar
  41. 42.
    Weinert T, Hartwell L (1989) The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241:317–322CrossRefGoogle Scholar
  42. 43.
    Mittnacht S, Weinberg RA (1991) G1/S phosphorylation of the retinoblastoma protein is associated with an altered affinity for the nuclear compartment. Cell 65:381–393CrossRefPubMedGoogle Scholar
  43. 44.
    Fialkow PJ, Najfeld V, Reddy AL, Singer J, Steinmann L (1978) Chronic lymphocytic leukaemia: clonal origin in a committed B-lymphocyte progenitor. Lancet 2:444–446CrossRefPubMedGoogle Scholar
  44. 45.
    Foulds L (1954) Tumor progression: a review. Cancer Res 14:327–339PubMedGoogle Scholar
  45. 46.
    Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28CrossRefPubMedGoogle Scholar
  46. 47.
    Berenblum I (1941) The cocarcinogenic action of croton resin. Cancer Res 1:44–48Google Scholar
  47. 48.
    Rous P, Kidd JG (1941) Conditional neoplasms and subthreshold neoplastic states. J Exp Med 73:365–389CrossRefPubMedPubMedCentralGoogle Scholar
  48. 49.
    Deelmann HT (1922) Die Entstehung des experimentellen Teerkrebses und die Bedeutung der Zellregeneration. Z Krebsforsch 21:220–226CrossRefGoogle Scholar
  49. 50.
    Armitage P, Doll R (1954) The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 8:1–12CrossRefPubMedPubMedCentralGoogle Scholar
  50. 51.
    Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF (1996) Abnormal centrosome amplification in the absence of p53. Science 271:1744–1747CrossRefPubMedGoogle Scholar
  51. 52.
    Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346:866–868CrossRefPubMedGoogle Scholar
  52. 53.
    Gisselsson D, Jonson T, Petersen A, Strombeck B, Dal Cin P, Hoglund M, Mitelman F, Mertens F, Mandahl N (2001) Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci USA 98:12683–12688CrossRefPubMedPubMedCentralGoogle Scholar
  53. 54.
    Cleaver JE (1968) Defective repair replication of DNA in xeroderma pigmentosum. Nature 218:652–656CrossRefPubMedGoogle Scholar
  54. 55.
    Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59:5002–5011PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • Volker Wunderlich
    • 1
  1. 1.Max Delbrück Center for Molecular MedicineBerlinGermany

Personalised recommendations