Advertisement

Radiologische Diagnostik bei Lebertumoren

  • H.-J. RaatschenEmail author
Schwerpunkt: Lebertumoren
  • 41 Downloads

Zusammenfassung

Die Abklärung fokaler Leberläsionen gehört zu den wesentlichen Aufgaben im radiologischen Alltag. Ziele der bildgebenden Diagnostik sind neben der Läsionsdetektion die Charakterisierung der Läsion sowie die Verlaufsbeurteilung nach chirurgischer oder lokaler Behandlung bzw. unter systemischer Therapie. Dieser Beitrag stellt die typische computer- und magnetresonanztomographische Morphologie hepatozellulärer Karzinome und intrahepatischer cholangiozellulärer Karzinome als wichtigste Vertreter primärer maligner Lebertumoren vor und stellt ihnen benigne primäre Leberläsionen wie das Adenom und die fokale noduläre Hyperplasie (FNH) gegenüber. Daneben werden relevante technische Aspekte der Bildgebung kurz zusammengefasst. Schließlich erfolgt die Vorstellung der Haupt- und Zusatzkriterien der Liver-Imaging-Reporting-and-Data-System(LI-RADS®)-Klassifikation, die für die Beurteilung von Leberläsionen in der Zirrhoseleber zunehmend klinisch etabliert werden.

Schlüsselwörter

Hepatozelluläres Karzinom Intrahepatisches cholangiozelluläres Karzinom Hepatozelluläres Adenom Fokale noduläre Hyperplasie Leberzirrhose 

Radiological diagnostic workup of liver tumors

Abstract

The imaging of focal liver lesions is a common task in daily radiological routine. The objectives of diagnostic imaging are, in addition to lesion detection, the characterization of the lesion as well as the follow-up assessment after surgical or local treatment or under systemic therapy. This article presents the typical morphologies observed in computed tomography and magnetic resonance imaging of hepatocellular carcinomas and intrahepatic cholangiocarcinomas as the most important representatives of primary malignant liver tumors and juxtaposes them with benign primary liver lesions such as adenoma and focal nodular hyperplasia (FNH). In addition, relevant technical aspects of imaging are briefly summarized. Finally, the main and additional criteria of the Liver Imaging Reporting and Data System (LI-RADS®) classification, which are becoming increasingly established clinically for the evaluation of liver lesions in the cirrhotic liver, are presented.

Keywords

Carcinoma, hepatocellular Cholangiocellular carcinoma, intrahepatic Adenoma, liver cell Focal nodular hyperplasia Liver cirrhosis 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

H.-J. Raatschen gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Merkle EM, Zech CJ, Bartolozzi C, Bashir MR, Ba-Ssalamah A, Huppertz A et al (2016) Consensus report from the 7th International Forum for Liver Magnetic Resonance Imaging. Eur Radiol 26(3):674–682CrossRefGoogle Scholar
  2. 2.
    Jhaveri K, Cleary S, Audet P, Balaa F, Bhayana D, Burak K et al (2015) Consensus statements from a multidisciplinary expert panel on the utilization and application of a liver-specific MRI contrast agent (gadoxetic acid). AJR Am J Roentgenol 204(3):498–509CrossRefGoogle Scholar
  3. 3.
    Chong YS, Kim YK, Lee MW, Kim SH, Lee WJ, Rhim HC et al (2012) Differentiating mass-forming intrahepatic cholangiocarcinoma from atypical hepatocellular carcinoma using gadoxetic acid-enhanced MRI. Clin Radiol 67(8):766–773CrossRefGoogle Scholar
  4. 4.
    Park M‑S, Kim S, Patel J, Hajdu CH, Do RKG, Mannelli L et al (2012) Hepatocellular carcinoma: detection with diffusion-weighted versus contrast-enhanced magnetic resonance imaging in pretransplant patients. Hepatology 56(1):140–148CrossRefGoogle Scholar
  5. 5.
    Xu P‑J, Yan F‑H, Wang J‑H, Shan Y, Ji Y, Chen C‑Z (2010) Contribution of diffusion-weighted magnetic resonance imaging in the characterization of hepatocellular carcinomas and dysplastic nodules in cirrhotic liver. J Comput Assist Tomogr 34(4):506–512CrossRefGoogle Scholar
  6. 6.
    Roberts LR, Sirlin CB, Zaiem F, Almasri J, Prokop LJ, Heimbach JK et al (2018) Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis. Hepatology 67(1):401–421CrossRefGoogle Scholar
  7. 7.
    Inchingolo R, De Gaetano AM, Curione D, Ciresa M, Miele L, Pompili M et al (2015) Role of diffusion-weighted imaging, apparent diffusion coefficient and correlation with hepatobiliary phase findings in the differentiation of hepatocellular carcinoma from dysplastic nodules in cirrhotic liver. Eur Radiol 25(4):1087–1096CrossRefGoogle Scholar
  8. 8.
    European Association for the Study of the Liver (2018) EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 69(1):182–236CrossRefGoogle Scholar
  9. 9.
    Mitchell DG, Bruix J, Sherman M, Sirlin CB (2015) LI-RADS (Liver Imaging Reporting and Data System): summary, discussion, and consensus of the LI-RADS Management Working Group and future directions. Hepatology 61(3):1056–1065CrossRefGoogle Scholar
  10. 10.
    Chernyak V, Fowler KJ, Kamaya A, Kielar AZ, Elsayes KM, Bashir MR et al (2018) Liver imaging reporting and data system (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients. Radiology 289(3):816–830CrossRefGoogle Scholar
  11. 11.
    Elsayes KM, Kielar AZ, Chernyak V, Morshid A, Furlan A, Masch WR et al (2019) LI-RADS: a conceptual and historical review from its beginning to its recent integration into AASLD clinical practice guidance. J Hepatocell Carcinoma 6:49–69CrossRefGoogle Scholar
  12. 12.
    Valls C, Gumà A, Puig I, Sanchez A, Andía E, Serrano T et al (2000) Intrahepatic peripheral cholangiocarcinoma: CT evaluation. Abdom Imaging 25(5):490–496CrossRefGoogle Scholar
  13. 13.
    Hamrick-Turner J, Abbitt PL, Ros PR (1992) Intrahepatic cholangiocarcinoma: MR appearance. AJR Am J Roentgenol 158(1):77–79CrossRefGoogle Scholar
  14. 14.
    Fan ZM, Yamashita Y, Harada M, Baba Y, Yamamoto H, Matsukawa T et al (1993) Intrahepatic cholangiocarcinoma: spin-echo and contrast-enhanced dynamic MR imaging. AJR Am J Roentgenol 161(2):313–317CrossRefGoogle Scholar
  15. 15.
    Ringe KI, Wacker F, Raatschen H‑J (1987) Is there a need for MRI within 24 hours after CT-guided percutaneous thermoablation of the liver? Acta Radiol 56(1):10–17CrossRefGoogle Scholar
  16. 16.
    Beyer L, Wassermann F, Pregler B, Michalik K, Rennert J, Wiesinger I et al (2017) Characterization of focal liver lesions using CEUS and MRI with liver-specific contrast media: experience of a single radiologic center. Ultraschall Med 38(06):619–625CrossRefGoogle Scholar
  17. 17.
    Lencioni R, Adam A (Hrsg) (2005) Focal liver lesions: detection, characterization, ablation ; with 39 tables. Springer, Berlin Heidelberg New York, S 403 (Medical radiology)Google Scholar
  18. 18.
    Grazioli L, Federle MP, Brancatelli G, Ichikawa T, Olivetti L, Blachar A (2001) Hepatic adenomas: imaging and pathologic findings. Radiographics 21(4):877–892 (discussion 892–894)CrossRefGoogle Scholar
  19. 19.
    Grazioli L, Olivetti L, Mazza G, Bondioni MP (2013) MR imaging of hepatocellular adenomas and differential diagnosis dilemma. Int J Hepatol 2013:374170CrossRefGoogle Scholar
  20. 20.
    Ba-Ssalamah A, Antunes C, Feier D, Bastati N, Hodge JC, Stift J et al (2015) Morphologic and molecular features of hepatocellular adenoma with gadoxetic acid–enhanced MR imaging. Radiology 277(1):104–113CrossRefGoogle Scholar
  21. 21.
    American college of radiology, liver imaging reporting and data system. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/LI-RADS. Zugegriffen: 10.09.2019

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.Institut für Diagnostische und Interventionelle RadiologieMedizinische Hochschule HannoverHannoverDeutschland

Personalised recommendations