Advertisement

Der Internist

, Volume 60, Issue 1, pp 49–58 | Cite as

Ernährung bei Diabetes mellitus Typ 2

  • S. BredeEmail author
  • H. Lehnert
CME
  • 1.1k Downloads

Zusammenfassung

Die zunehmende Inzidenz metabolischer Erkrankungen, wie des Diabetes mellitus Typ 2, ist ein gesundheitsökonomisches Problem. Ernährungsmaßnahmen stellen eine therapeutische Grundlage zur Verhinderung gesundheitlicher Konsequenzen, beispielsweise kardiovaskulärer Erkrankungen, dar. Nach aktueller Datenlage werden diese weniger durch einzelne Nahrungsbestandteile als vielmehr durch die Zusammensetzung der Nahrung bestimmt. Für verschiedene Ernährungsformen ist eine positive Beeinflussung des Glukose- und Fettstoffwechsels bei Typ-2-Diabetes nachgewiesen. Neben der Ernährungsart ist aber auch die blutzuckersteigernde Wirkung, der sogenannte glykämische Index von Lebensmitteln, entscheidend. Zudem konnten für verschiedene Lebensmittel, unter anderem für Kaffee, positive Effekte bei Patienten mit Diabetes nachgewiesen werden.

Schlüsselwörter

Ernährungsverhalten Glykämischer Index Glykämische Last Fettarme Ernährung Kohlenhydratarme Ernährung 

Nutrition in type 2 diabetes mellitus

Abstract

The increasing incidence of metabolic diseases, such as type 2 diabetes mellitus, poses a major problem for the healthcare system. Healthy food habits represent an important therapeutic measure to prevent health sequelae, such as cardiovascular diseases. According to recent data these are less due to individual dietary components and more to the composition of nutrition. A positive effect on glucose and fat metabolism in type 2 diabetes has been confirmed for various forms of nutrition. In addition to the type of nutrition, the so-called glycemic index of foodstuffs is also decisive for blood glucose control. Additionally, beneficial effects for particular foodstuffs, such as coffee, could be determined in patients with diabetes.

Keywords

Feeding behavior Glycemic index Glycemic load Diet, fat-restricted Diet, carbohydrate-restricted 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

S. Brede und H. Lehnert geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Stahel P, Xiao C, Hegele RA et al (2018) The atherogenic dyslipidemia complex and novel approaches to cardiovascular disease prevention in diabetes. Can J Cardiol 34(5):595.  https://doi.org/10.1016/j.cjca.2017.12.007 CrossRefPubMedGoogle Scholar
  2. 2.
    Brede S, Serfling G, Klement J et al (2016) Clinical scenario of the metabolic syndrome. Visc Med 32:336–341CrossRefGoogle Scholar
  3. 3.
    Riccardi G, Rivellese AA, Giacco R (2008) Role of glycemic index and glycemic load in the healthy state, in prediabetes, and in diabetes. Am J Clin Nutr 87:269S–274SCrossRefGoogle Scholar
  4. 4.
    Foster-Powell K, Holt SH, Brand-Miller JC (2002) International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 76:5–56CrossRefGoogle Scholar
  5. 5.
    Gomes JMG, Fabrini SP, Alfenas RCG (2017) Low glycemic index diet reduces body fat and attenuates inflammatory and metabolic responses in patients with type 2 diabetes. Arch Endocrinol Metab 61:137–144CrossRefGoogle Scholar
  6. 6.
    Ojo O, Ojo OO, Adebowale F et al (2018) The effect of dietary glycaemic index on glycaemia in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Nutrients 10:373.  https://doi.org/10.3390/nu10030373 CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Pi-Sunyer X (2005) Do glycemic index, glycemic load, and fiber play a role in insulin sensitivity, disposition index, and type 2 diabetes? Diabetes Care 28:2978–2979CrossRefGoogle Scholar
  8. 8.
    Soare A, Khazrai YM, Del Toro R et al (2014) The effect of the macrobiotic Ma-Pi 2 diet vs. the recommended diet in the management of type 2 diabetes: the randomized controlled MADIAB trial. Nutr Metab (Lond) 11:39CrossRefGoogle Scholar
  9. 9.
    Silva FM, Kramer CK, De Almeida JC et al (2013) Fiber intake and glycemic control in patients with type 2 diabetes mellitus: a systematic review with meta-analysis of randomized controlled trials. Nutr Rev 71:790–801CrossRefGoogle Scholar
  10. 10.
    Flaim C, Kob M, Di Pierro AM et al (2017) Effects of a whey protein supplementation on oxidative stress, body composition and glucose metabolism among overweight people affected by diabetes mellitus or impaired fasting glucose: a pilot study. J Nutr Biochem 50:95–102CrossRefGoogle Scholar
  11. 11.
    Archundia Herrera MC, Subhan FB, Chan CB (2017) Dietary patterns and cardiovascular disease risk in people with type 2 diabetes. Curr Obes Rep 6:405–413CrossRefGoogle Scholar
  12. 12.
    Anania C, Perla FM, Olivero F et al (2018) Mediterranean diet and nonalcoholic fatty liver disease. World J Gastroenterol 24:2083–2094CrossRefGoogle Scholar
  13. 13.
    Faria A, Persaud SJ (2017) Cardiac oxidative stress in diabetes: mechanisms and therapeutic potential. Pharmacol Ther 172:50–62CrossRefGoogle Scholar
  14. 14.
    Lau WB, Ohashi K, Wang Y et al (2017) Role of adipokines in cardiovascular disease. Circ J 81:920–928CrossRefGoogle Scholar
  15. 15.
    Holvoet P, Lee DH, Steffes M et al (2008) Association between circulating oxidized low-density lipoprotein and incidence of the metabolic syndrome. JAMA 299:2287–2293CrossRefGoogle Scholar
  16. 16.
    Tsai IJ, Croft KD, Mori TA et al (2009) 20-HETE and F2-isoprostanes in the metabolic syndrome: the effect of weight reduction. Free Radic Biol Med 46:263–270CrossRefGoogle Scholar
  17. 17.
    Bullo M, Lamuela-Raventos R, Salas-Salvado J (2011) Mediterranean diet and oxidation: nuts and olive oil as important sources of fat and antioxidants. Curr Top Med Chem 11:1797–1810CrossRefGoogle Scholar
  18. 18.
    Carluccio MA, Siculella L, Ancora MA et al (2003) Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler Thromb Vasc Biol 23:622–629CrossRefGoogle Scholar
  19. 19.
    Papoutsi Z, Kassi E, Chinou I et al (2008) Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483. Br J Nutr 99:715–722CrossRefGoogle Scholar
  20. 20.
    Mitjavila MT, Fandos M, Salas-Salvado J et al (2013) The Mediterranean diet improves the systemic lipid and DNA oxidative damage in metabolic syndrome individuals. A randomized, controlled, trial. Clin Nutr 32:172–178CrossRefGoogle Scholar
  21. 21.
    Salas-Salvado J, Bullo M, Babio N et al (2011) Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 34:14–19CrossRefGoogle Scholar
  22. 22.
    Dominguez LJ, Bes-Rastrollo M, De La Fuente-Arrillaga C et al (2013) Similar prediction of total mortality, diabetes incidence and cardiovascular events using relative- and absolute-component Mediterranean diet score: the SUN cohort. Nutr Metab Cardiovasc Dis 23:451–458CrossRefGoogle Scholar
  23. 23.
    Estruch R, Ros E, Martinez-Gonzalez MA (2013) Mediterranean diet for primary prevention of cardiovascular disease. N Engl J Med 369:676–677PubMedGoogle Scholar
  24. 24.
    Diaz-Lopez A, Babio N, Martinez-Gonzalez MA et al (2015) Mediterranean diet, retinopathy, nephropathy, and microvascular diabetes complications: a post hoc analysis of a randomized trial. Diabetes Care 38:2134–2141CrossRefGoogle Scholar
  25. 25.
    Bozzetto L, Prinster A, Annuzzi G et al (2012) Liver fat is reduced by an isoenergetic MUFA diet in a controlled randomized study in type 2 diabetic patients. Diabetes Care 35:1429–1435CrossRefGoogle Scholar
  26. 26.
    Jung CH, Choi KM (2017) Impact of high-carbohydrate diet on metabolic parameters in patients with type 2 diabetes. Nutrients.  https://doi.org/10.3390/nu9040322 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Veum VL, Laupsa-Borge J, Eng O et al (2017) Visceral adiposity and metabolic syndrome after very high-fat and low-fat isocaloric diets: a randomized controlled trial. Am J Clin Nutr 105:85–99CrossRefGoogle Scholar
  28. 28.
    Guldbrand H, Dizdar B, Bunjaku B et al (2012) In type 2 diabetes, randomisation to advice to follow a low-carbohydrate diet transiently improves glycaemic control compared with advice to follow a low-fat diet producing a similar weight loss. Diabetologia 55:2118–2127CrossRefGoogle Scholar
  29. 29.
    Westman EC, Yancy WS Jr., Mavropoulos JC et al (2008) The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr Metab (Lond) 5:36CrossRefGoogle Scholar
  30. 30.
    Hallberg SJ, Mckenzie AL, Williams PT et al (2018) Effectiveness and safety of a novel care model for the management of type 2 diabetes at 1 year: an open-label, non-randomized, controlled study. Diabetes Ther 9:583–612PubMedPubMedCentralGoogle Scholar
  31. 31.
    Seidelmann SB, Claggett B, Cheng S et al (2018) Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health 3:e419–e428CrossRefGoogle Scholar
  32. 32.
    Brouns F (2018) Overweight and diabetes prevention: is a low-carbohydrate-high-fat diet recommendable? Eur J Nutr 57:1301–1312CrossRefGoogle Scholar
  33. 33.
    Dong JY, Zhang ZL, Wang PY et al (2013) Effects of high-protein diets on body weight, glycaemic control, blood lipids and blood pressure in type 2 diabetes: meta-analysis of randomised controlled trials. Br J Nutr 110:781–789CrossRefGoogle Scholar
  34. 34.
    Tay J, Thompson CH, Luscombe-Marsh ND et al (2015) Long-term effects of a very low carbohydrate compared with a high carbohydrate diet on renal function in individuals with type 2 diabetes: a randomized trial. Medicine (Baltimore) 94:e2181CrossRefGoogle Scholar
  35. 35.
    Krebs JD, Elley CR, Parry-Strong A et al (2012) The Diabetes Excess Weight Loss (DEWL) Trial: a randomised controlled trial of high-protein versus high-carbohydrate diets over 2 years in type 2 diabetes. Diabetologia 55:905–914CrossRefGoogle Scholar
  36. 36.
    Dinu M, Abbate R, Gensini GF et al (2017) Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr 57:3640–3649CrossRefGoogle Scholar
  37. 37.
    Appel LJ, Brands MW, Daniels SR et al (2006) Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension 47:296–308CrossRefGoogle Scholar
  38. 38.
    Siervo M, Lara J, Chowdhury S et al (2015) Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: a systematic review and meta-analysis. Br J Nutr 113:1–15CrossRefGoogle Scholar
  39. 39.
    Golan R, Shelef I, Shemesh E et al (2017) Effects of initiating moderate wine intake on abdominal adipose tissue in adults with type 2 diabetes: a 2-year randomized controlled trial. Public Health Nutr 20:549–555CrossRefGoogle Scholar
  40. 40.
    King DG, Walker M, Campbell MD et al (2018) A small dose of whey protein co-ingested with mixed-macronutrient breakfast and lunch meals improves postprandial glycemia and suppresses appetite in men with type 2 diabetes: a randomized controlled trial. Am J Clin Nutr 107:550–557CrossRefGoogle Scholar
  41. 41.
    Li X, Cai X, Ma X et al (2016) Short- and long-term effects of wholegrain oat intake on weight management and glucolipid metabolism in overweight type-2 diabetics: a randomized control trial. Nutrients.  https://doi.org/10.3390/nu8090549 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Abbasi NN, Purslow PP, Tosh SM et al (2016) Oat beta-glucan depresses SGLT1- and GLUT2-mediated glucose transport in intestinal epithelial cells (IEC-6). Nutr Res 36:541–552CrossRefGoogle Scholar
  43. 43.
    Carlstrom M, Larsson SC (2018) Coffee consumption and reduced risk of developing type 2 diabetes: a systematic review with meta-analysis. Nutr Rev 76:395–417CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Medizinische Klinik 1Universitätsklinikum Schleswig-Holstein, Campus LübeckLübeckDeutschland
  2. 2.Deutsches Zentrum für Diabetesforschung e. V. (DZD)LübeckDeutschland

Personalised recommendations