Advertisement

Der Internist

, Volume 60, Issue 4, pp 339–344 | Cite as

„Lab on a Chip“

  • Klaus S. DreseEmail author
Schwerpunkt: Digitale Medizin
  • 453 Downloads

Zusammenfassung

Hintergrund

Durch die Miniaturisierung haben sich nicht nur in der Mikroelektronik neue Potenziale ergeben, auch in der Sensorik und Analytik ist durch die Mikrotechnik eine Revolution in Bewegung gekommen.

Entwicklungen

Die „Lab-on-a-chip“(LOC)-Technologie erlaubt, Laborprozesse vollständig und automatisiert in Kanälen, deren Größe im Mikrometerbereich liegen, durchzuführen. Die größte Herausforderung besteht darin, die Fertigungskosten trotz der Miniaturisierung und der anwendungsspezifischen Auslegung niedrig zu halten. Wird dies erreicht, kann man die medizinische Laboranalytik meist schneller und mit weniger Personalaufwand durchführen. So ist zu erklären, dass LOC bereits in viele Laborgeräte integriert wurde und aus dem „point-of-care testing“ (POCT) nicht mehr wegzudenken ist. Durch neue Marker, wie bei der Flüssigbiopsie, und Messtechniken, wie die Raman-Spektroskopie und Massenspektrometrie, entstehen weitere Potenziale, die es erlauben werden, schnellere und spezifischere laboranalytische Aussagen auf Basis der LOC-Technologie zu machen.

Schlussfolgerungen

Die LOC-Technologie hat das Potenzial, die medizinische Praxis zu verändern, insbesondere in Fällen, in denen das zentrale Labor nicht verfügbar ist oder nicht schnell genug Ergebnisse liefern kann.

Schlüsselwörter

Mikrofluidik „Point-of-care testing“ Labordiagnostik Raman-Spektroskopie Massenspektrometrie 

Lab on a Chip

Abstract

Background

Miniaturization has not only driven microelectronics and generated new unforeseen options but has also dramatically changed sensors and analytics.

Developments

The Lab on a Chip (LOC) technology enables laboratory processes to run fully automated in canals in the micrometre range. The biggest challenge for LOC is to keep production costs low despite miniaturization and application-specific design. If this is achieved medical laboratory analyses can usually be carried out faster and with less hands on time. This explains why LOCs are already integrated into many laboratory instruments and why point-of-care testing (POCT) can no longer be imagined without it. New markers, such as in liquid biopsies and measurement techniques, such as Raman spectroscopy and mass spectroscopy, create further potentials that will enable faster and more specific laboratory analyses to be made using LOC technology.

Conclusion

The LOC technology has the potential of changing the medical practice especially in cases when the central laboratory is not available or is unable to provide results fast enough.

Keywords

Microfluidics Point-of-care testing Laboratory diagnostics Spectrum analysis, Raman Mass spectrometry 

Notes

Danksagung

Der Autor bedankt sich beim European Fund of Regional Development (EFRE) für die Förderung im Rahmen des Projekts „InnoTerm“ und bei der Technologie Allianz Oberfranken.

Einhaltung ethischer Richtlinien

Interessenkonflikt

K.S. Drese gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Abgrall P, Gue A (2007) Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. J Micromech Microeng 17(5):R15CrossRefGoogle Scholar
  2. 2.
    Attia UM, Marson S, Alcock JR (2009) Micro-injection moulding of polymer microfluidic devices. Microfluid Nanofluidics 7(1):1.  https://doi.org/10.1007/s10404-009-0421-x CrossRefGoogle Scholar
  3. 3.
    Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390(1):89–111.  https://doi.org/10.1007/s00216-007-1692-2 CrossRefPubMedGoogle Scholar
  4. 4.
    Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760CrossRefGoogle Scholar
  5. 5.
    Boedicker JQ, Li L, Kline TR, Ismagilov RF (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8(8):1265–1272.  https://doi.org/10.1039/b804911d CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bustin SA (2017) How to speed up the polymerase chain reaction. Biomol Detect Quantif 12:10–14.  https://doi.org/10.1016/j.bdq.2017.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095CrossRefGoogle Scholar
  8. 8.
    Ehrfeld W (2002) Handbuch Mikrotechnik. Hanser, MünchenGoogle Scholar
  9. 9.
    Farrar JS, Wittwer CT (2015) Extreme PCR: efficient and specific DNA amplification in 15-60 seconds. Clin Chem 61(1):145–153.  https://doi.org/10.1373/clinchem.2014.228304 CrossRefPubMedGoogle Scholar
  10. 10.
    Ferroni A, Suarez S, Beretti J‑L, Dauphin B, Bille E, Meyer J, Bougnoux M‑E, Alanio A, Berche P, Nassif X (2010) Real-time identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48(5):1542–1548.  https://doi.org/10.1128/JCM.02485-09 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hardt S, Drese KS, Hessel V, Schönfeld F (2005) Passive micromixers for applications in the microreactor and μTAS fields. Microfluid Nanofluidics 1(2):108–118CrossRefGoogle Scholar
  12. 12.
    Ingham CJ, Sprenkels A, Bomer J, Molenaar D, van den Berg A, van Hylckama Vlieg JET, de Vos WM (2007) The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci U S A 104(46):18217–18222.  https://doi.org/10.1073/pnas.0701693104 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jung W, Han J, Choi J‑W, Ahn CH (2015) Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron Eng 132:46–57.  https://doi.org/10.1016/j.mee.2014.09.024 CrossRefGoogle Scholar
  14. 14.
    Kalsi S, Sellars S, Turner C, Sutton J, Morgan H (2017) A programmable digital microfluidic assay for the simultaneous detection of multiple anti-microbial resistance genes. Micromachines (Basel) 8(4):111.  https://doi.org/10.3390/mi8040111 CrossRefGoogle Scholar
  15. 15.
    Krishnamurthy T, Rajamani U, Ross PL (1996) Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10(8):883.  https://doi.org/10.1002/(SICI)1097-0231(19960610)10:8<883::AID-RCM594>3.0.CO;2-V CrossRefGoogle Scholar
  16. 16.
    Luppa PB, Schlebusch H (2008) POCT-patientennahe Labordiagnostik. Springer, Heidelberg, Berlin, New YorkCrossRefGoogle Scholar
  17. 17.
    Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B Chem 1(1-6):244–248CrossRefGoogle Scholar
  18. 18.
    Morbioli GG, Mazzu-Nascimento T, Stockton AM, Carrilho E (2017) Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - a review. Anal Chim Acta 970:1–22CrossRefGoogle Scholar
  19. 19.
    Morozov VN, Groves S, Turell MJ, Bailey C (2007) Three minutes-long electrophoretically assisted zeptomolar microfluidic immunoassay with magnetic-beads detection. J Am Chem Soc 129(42):12628–12629CrossRefGoogle Scholar
  20. 20.
    Neoh KH, Hassan AA, Chen A, Sun Y, Liu P, Xu K‑F, Wong AST, Han RPS (2018) Rethinking liquid biopsy: microfluidic assays for mobile tumor cells in human body fluids. Biomaterials 150:112–124.  https://doi.org/10.1016/j.biomaterials.2017.10.006 CrossRefPubMedGoogle Scholar
  21. 21.
    Pallaoro A, Hoonejani MR, Braun GB, Meinhart CD, Moskovits M (2015) Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano 9(4):4328–4336.  https://doi.org/10.1021/acsnano.5b00750 CrossRefPubMedGoogle Scholar
  22. 22.
    Ríos Á, Zougagh M (2015) Modern qualitative analysis by miniaturized and microfluidic systems. Trends Analyt Chem 69:105–113CrossRefGoogle Scholar
  23. 23.
    Shlyapnikov YM, Shlyapnikova EA, Simonova MA, Shepelyakovskaya AO, Brovko FA, Komaleva RL, Grishin EV, Morozov VN (2012) Rapid simultaneous ultrasensitive immunodetection of five bacterial toxins. Anal Chem 84(13):5596–5603CrossRefGoogle Scholar
  24. 24.
    Smith S, Sewart R, Becker H, Roux P, Land K (2016) Blister pouches for effective reagent storage on microfluidic chips for blood cell counting. Microfluid Nanofluidics 20(12):163.  https://doi.org/10.1007/s10404-016-1830-2 CrossRefGoogle Scholar
  25. 25.
    Syedmoradi L, Daneshpour M, Alvandipour M, Gomez FA, Hajghassem H, Omidfar K (2017) Point of care testing: the impact of nanotechnology. Biosens Bioelectron 87:373–387.  https://doi.org/10.1016/j.bios.2016.08.084 CrossRefPubMedGoogle Scholar
  26. 26.
    Temiz Y, Lovchik RD, Kaigala GV, Delamarche E (2015) Lab-on-a-chip devices: how to close and plug the lab? Microelectron Eng 132:156–175.  https://doi.org/10.1016/j.mee.2014.10.013 CrossRefGoogle Scholar
  27. 27.
    Trauba JM, Wittwer CT (2017) Microfluidic extreme PCR: <1 minute DNA amplification in a thin film disposable. J Biomed Sci Eng 10(5):219–231.  https://doi.org/10.4236/jbise.2017.105017 CrossRefGoogle Scholar
  28. 28.
    Whale AS, Huggett JF, Cowen S, Speirs V, Shaw J, Ellison S, Foy CA, Scott DJ (2012) Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res 40(11):e82.  https://doi.org/10.1093/nar/gks203 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Whitesides G (2018) Microfluidics in late adolescenceGoogle Scholar
  30. 30.
    Xia Y, Si J, Li Z (2016) Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron 77:774–789.  https://doi.org/10.1016/j.bios.2015.10.032 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.ISAT – Institut für Sensor- und AktortechnikHochschule für angewandte Wissenschaften CoburgCoburgDeutschland

Personalised recommendations