Advertisement

Der Internist

, Volume 59, Issue 12, pp 1230–1238 | Cite as

Was ist gesichert bei den Zelltherapien?

Möglichkeiten und Grenzen in der Immunonkologie
  • A. Quaiser
  • U. KöhlEmail author
Schwerpunkt: Was ist gesichert in der Therapie?

Zusammenfassung

Die Zell- und Gentherapie als Teil der Immunonkologie hat in der Medizin einen wichtigen Stellenwert erreicht. Die Stammzelltransplantation ist nach jahrzehntelanger Erfahrung fest etabliert, mit inzwischen weltweit >1 Mio. durchgeführten Transplantationen. Durch die großen Erfolge der letzten Jahre mit Chimärem-Antigenrezeptor-(CAR)-T-Zellen bei CD19-positiven Leukämien und Lymphomen steigt das Interesse an zellulären Therapien stetig. Das vorliegende Review gibt daher auch einen Überblick über Donorlymphozyten, antigenspezifische T‑Zellen, regulatorische T‑Zellen, Natürliche-Killer(NK)-Zellen, mesenchymale Stroma- und induzierte pluripotente Stammzellen (iPS) in der Immunonkologie.

Schlüsselwörter

Immuntherapie Gentherapie Stammzelltransplantation CAR-T-Zellen „Advanced therapy medicinal products“ 

What is established in cell therapies?

Possibilities and limits in immuno-oncology

Abstract

Cell and gene therapy as part of immuno-oncology has reached an important milestone in medicine. After decades of experience stem cell transplantation is well established with worldwide >1 million transplantations to date. Due to the improved success of the last years using chimeric antigen receptor (CAR) T cells for CD19 positive leukemia and lymphomas, the interest in cellular therapies is continuously increasing. The current review also gives a short overview about donor lymphocytes, antigen-specific T cells, regulatory T cells, natural killer (NK) cells, mesenchymal stromal cells and induced pluripotent stem (iPS) cells in immuno-oncology.

Keywords

Immunotherapy Gene therapy Stem cell transplantation CAR-T-Cells Advanced therapy medicinal products 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. Quaiser und U. Köhl geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Barrett AJ, Horowitz MM, Pollock BH, Zhang MJ, Bortin MM, Buchanan GR, Camitta BM, Ochs J, Graham-Pole J, Rowlings PA (1994) Bone marrow transplants from HLA-identical siblings as compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission. N Engl J Med 331:1253–1258CrossRefGoogle Scholar
  2. 2.
    Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, Rimm AA, Ringdén O, Rozman C, Speck B (1990) Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75:555–562PubMedGoogle Scholar
  3. 3.
    Huenecke S, Bremm M, Cappel C, Esser R, Quaiser A, Boenig H, Jarisch A, Soerensen J, Klingebiel T, Bader P, Koehl U (2016) Optimization of individualized graft composition: CD3/CD19 depletion combined with CD34 selection for haploidentical transplantation. Transfusion 56:2336–2345CrossRefGoogle Scholar
  4. 4.
    Bethge WA, Faul C, Bornhauser M, Stuhler G, Beelen DW, Lang P, Stelljes M, Vogel W, Hägele M, Handgretinger R, Kanz L (2008) Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: an update. Blood Cells Mol Dis 40:13–19CrossRefGoogle Scholar
  5. 5.
    Klingebiel T, Handgretinger R, Lang P, Bader P, Niethammer D (2004) Haploidentical transplantation for acute lymphoblastic leukemia in childhood. Blood Rev 18:181–192CrossRefGoogle Scholar
  6. 6.
    van Rhee F, Kolb HJ (1995) Donor leukocyte transfusions for leukemic relapse. Curr Opin Hematol 2(6):423–430CrossRefGoogle Scholar
  7. 7.
    Leen AM, Tripic T, Rooney CM (2010) Challenges of T cell therapies for virus-associated diseases after hematopoietic stem cell transplantation. Expert Opin Biol Ther 10(3):337–351.  https://doi.org/10.1517/14712590903456003 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Peggs KS, Mackinnon S (2004) Cytomegalovirus: the role of CMV post-haematopoietic stem cell transplantation. Int J Biochem Cell Biol 36(4):695–701CrossRefGoogle Scholar
  9. 9.
    Feucht J, Opherk K, Lang P, Kayser S, Hartl L, Bethge W, Matthes-Martin S, Bader P, Albert MH, Maecker-Kolhoff B, Greil J, Einsele H, Schlegel PG, Schuster FR, Kremens B, Rossig C, Gruhn B, Handgretinger R, Feuchtinger T (2015) Adoptive T‑cell therapy with hexon-specific Th1 cells as a treatment of refractory adenovirus infection after HSCT. Blood 125(12):1986–1994.  https://doi.org/10.1182/blood-2014-06-573725 CrossRefPubMedGoogle Scholar
  10. 10.
    Schultze-Florey RE, Tischer S, Kuhlmann L, Hundsdoerfer P, Koch A, Anagnostopoulos I, Ravens S, Goudeva L, Schultze-Florey C, Koenecke C, Blasczyk R, Koehl U, Heuft HG, Prinz I, Eiz-Vesper B, Maecker-Kolhoff B (2018) Dissecting Epstein-Barr virus-specific T‑cell responses after Allogeneic EBV-specific T‑cell transfer for central nervous system posttransplant lymphoproliferative disease. Front Immunol 9:1475.  https://doi.org/10.3389/fimmu.2018.01475 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tischer S, Priesner C, Heuft HG, Goudeva L, Mende W, Barthold M, Klöß S, Arseniev L, Aleksandrova K, Maecker-Kolhoff B, Blasczyk R, Koehl U, Eiz-Vesper B (2014) Rapid generation of clinical-grade antiviral T cells: selection of suitable T‑cell donors and GMP-compliant manufacturing of antiviral T cells. J Transl Med 12(1):336–316CrossRefGoogle Scholar
  12. 12.
    Eshhar Z, Waks T, Gross G, Schindler DG (1993) Specific activation and targeting of Cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma-subunit or zeta-subunit of the immunoglobulin and T‑cell receptors. Proc Natl Acad Sci Usa 90(2):720–724CrossRefGoogle Scholar
  13. 13.
    Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3(95):95ra73CrossRefGoogle Scholar
  14. 14.
    Chmielewski M, Abken H (2015) TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther 15(8):1145.  https://doi.org/10.1517/14712598.2015.1046430 CrossRefPubMedGoogle Scholar
  15. 15.
    Köhl U, Arsenieva S, Holzinger A, Abken H (2018) CAR T cells in trials: recent achievements and challenges that remain in the production of modified T cells for clinical applications. Hum Gene Ther.  https://doi.org/10.1089/hum.2017.254 CrossRefPubMedGoogle Scholar
  16. 16.
    Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, Butler K, Rivat C, Wright G, Somana K, Ghorashian S, Pinner D, Ahsan G, Gilmour K, Lucchini G, Inglott S, Mifsud W, Chiesa R, Peggs KS, Chan L, Farzeneh F, Thrasher AJ, Vora A, Pule M, Veys P (2017) Molecular remission of infant B‑ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med 9(374):eaaj2013.  https://doi.org/10.1126/scitranslmed.aaj2013 (Erratum in: Sci Transl Med. 2017 Feb 15;9(377):null.)CrossRefPubMedGoogle Scholar
  17. 17.
    Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD, Qayed M, De Moerloose B, Hiramatsu H, Schlis K, Davis KL, Martin PL, Nemecek ER, Yanik GA, Peters C, Baruchel A, Boissel N, Mechinaud F, Balduzzi A, Krueger J, June CH, Levine BL, Wood P, Taran T, Leung M, Mueller KT, Zhang Y, Sen K, Lebwohl D, Pulsipher MA, Grupp SA (2018) Tisagenlecleucel in children and young adults with B‑cell Lymphoblastic leukemia. N Engl J Med 378(5):439–448.  https://doi.org/10.1056/NEJMoa1709866 CrossRefPubMedGoogle Scholar
  18. 18.
    https://clinicaltrials.gov, abgerufen am 14.09.2018
  19. 19.
    Friedman KM, Garrett TE, Evans JW, Horton HM, Latimer HJ, Seidel SL, Horvath CJ, Morgan RA (2018) Effective targeting of multiple B‑cell maturation antigen-expressing hematological malignances by anti-B-cell maturation antigen chimeric antigen receptor T cells. Hum Gene Ther 29(5):585–601.  https://doi.org/10.1089/hum.2018.001 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562):2097–2100CrossRefGoogle Scholar
  21. 21.
    Granzin M, Wagner J, Köhl U, Cerwenka A, Huppert V, Ullrich E (2017) Shaping of natural killer cell antitumor activity by ex vivo cultivation. Front Immunol 8:458.  https://doi.org/10.3389/fimmu.2017.00458 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Koehl U, Kaberer C, Spanholtz J, Lee DA, Miller JS, Cooley S, Lowdell M, Uharek L, Klingemann H, Curti A, Leung W, Alici E (2016) Advances in clinical NK cell studies: donor selection, manufacturing and quality control. Oncoimmunology 5(4):e1115178CrossRefGoogle Scholar
  23. 23.
    Malmberg KJ, Carlsten M, Björklund A, Sohlberg E, Bryceson YT, Ljunggren HG (2017) Natural killer cell-mediated immunosurveillance of human cancer. Semin Immunol 31:20–29.  https://doi.org/10.1016/j.smim.2017.08.002 CrossRefPubMedGoogle Scholar
  24. 24.
    Mehta RS, Rezvani K (2018) Chimeric antigen receptor expressing natural killer cells for the immunotherapy of cancer. Front Immunol 9:283.  https://doi.org/10.3389/fimmu.2018.00283 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Trento C, Bernardo ME, Nagler A, Kuçi S, Bornhäuser M, Köhl U, Strunk D, Galleu A, Sanchez-Guijo F, Gaipa G, Introna M, Bukauskas A, Le Blanc K, Apperley J, Roelofs H, Van Campenhout A, Beguin Y, Kuball J, Lazzari L, Avanzini MA, Fibbe W, Chabannon C, Bonini C, Dazzi F (2018) Manufacturing mesenchymal stromal cells for the treatment of graft-versus-host disease: a survey among centers affiliated with the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant.  https://doi.org/10.1016/j.bbmt.2018.07.015 CrossRefPubMedGoogle Scholar
  26. 26.
    Romano M, Tung SL, Smyth LA, Lombardi G (2017) Treg therapy in transplantation: a general overview. Transpl Int 30(8):745–753.  https://doi.org/10.1111/tri.12909 CrossRefPubMedGoogle Scholar
  27. 27.
    Regulation (EC) No 1394/2007 Of The European Parliament And Of The Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004. Official Journal of the European Union.Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Fraunhofer-Institut für Zelltherapie und ImmunologieLeipzigDeutschland
  2. 2.Institut für Klinische ImmunologieUniversitätsklinikum LeipzigLeipzigDeutschland
  3. 3.Institut für ZelltherapeutikaMedizinische Hochschule HannoverHannoverDeutschland

Personalised recommendations