Advertisement

Der Internist

, Volume 59, Issue 7, pp 661–667 | Cite as

Auswirkungen von Schilddrüsenfunktionsstörungen auf den Knochen

  • E. Tsourdi
  • F. Lademann
  • H. SiggelkowEmail author
Schwerpunkt: Schilddrüsenerkrankungen

Zusammenfassung

Schilddrüsenhormone (SDH) tragen wesentlich zur Skelettentwicklung in der Kindheit und zum Erhalt eines gesunden Knochens im Erwachsenenalter bei. Schilddrüsendysfunktionen können sich auf die Knochenqualität auswirken und sind mit einem erhöhten Frakturrisiko assoziiert. Eine infantile Hypothyreose beeinträchtigt das Skelettwachstum und die Knochenmineralisierung. Sie kann jedoch durch eine adäquate und rechtzeitige Substitution mit SDH therapiert werden. Dahingegen beschleunigt eine Hyperthyreose im jungen Alter die Skelettentwicklung und kann aufgrund einer vorzeitigen Fusion der Wachstumsplatten ebenfalls zu Minderwuchs führen. Eine Hypothyreose im Erwachsenenalter führt zu einem verlangsamten Knochenumsatz mit gesteigerter Mineralisierung. Eine Assoziation mit einem erhöhten Frakturrisiko ist jedoch unzureichend belegt. Im Erwachsenenalter geht ein SDH-Überschuss mit Knochenverlust und erhöhtem Knochenumsatz einher, primär bedingt durch eine gesteigerte Knochenresorption durch die Osteoklasten. Dementsprechend gehört die manifeste Hyperthyreose zu den gut etablierten Ursachen einer sekundären Osteoporose bzw. einer Fragilitätsfraktur. Eine latente Hyperthyreose wirkt sich ebenfalls negativ auf die Knochenmineraldichte (BMD) aus und ist mit Frakturen assoziiert. Bei den meisten Patienten mit manifester oder latenter Hyperthyreose führt die Wiederherstellung eines euthyreoten Schilddrüsenstatus zu einer Normalisierung der BMD. Bei postmenopausalen Frauen, die wegen eines differenzierten Schilddrüsenkarzinoms eine Suppression des thyreoideastimulierenden Hormons erhalten, kann jedoch eine osteoporosespezifische antiresorptive Behandlung indiziert sein. Zusammenfassend belegen zahlreiche Studien die wesentliche Bedeutung eines euthyreoten SDH-Status für das Knochenwachstum in der Kindheit und für die Knochenhomöostase im Erwachsenenalter.

Schlüsselwörter

Hyperthyreose Hypothyreose Osteoporose Frakturrisiko Störungen des Knochenstoffwechsels 

Impact of thyroid diseases on bone

Abstract

Thyroid hormones are key regulators of skeletal development in childhood and bone homeostasis in adulthood, and thyroid diseases have been associated with increased osteoporotic fractures. Hypothyroidism in children leads to an impaired skeletal maturation and mineralization, but an adequate and timely substitution with thyroid hormones stimulates bone growth. Conversely, hyperthyroidism at a young age accelerates skeletal development, but may also cause short stature because of a premature fusion of the growth plates. Hypothyroidism in adults causes an increase in the duration of the remodeling cycle and, thus, leads to low bone turnover and enhanced mineralization, but an association with a higher fracture risk is less well established. In adults, a surplus of thyroid hormones enhances bone turnover, mostly due to an increased bone resorption driven by osteoclasts. Thus, hyperthyroidism is a well-recognized cause of high-bone turnover secondary osteoporosis, resulting in an increased susceptibility to fragility fractures. Subclinical hyperthyroidism, especially resulting from endogenous disease, also has an adverse effect on bone mineral density and is associated with fractures. In most patients with overt or subclinical hyperthyroidism restoration of the euthyroid status reverses bone loss. In postmenopausal women who receive thyroid-stimulating hormone suppression therapy because of thyroid cancer, antiresorptive treatments may be indicated. Overall, extensive data support the importance of a euthyroid status for bone mineral accrual and growth in childhood as well as maintenance of bone health in adulthood.

Keywords

Hyperthyroidism Hypothyroidism Osteoporosis Risk, fractures, bone Bone diseases, metabolic 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

E. Tsourdi erhielt Honorare für Vorträge von Amgen. F. Lademann gibt an, dass kein Interessenkonflikt besteht. H. Siggelkow erhielt Honorare für Vorträge von MSD, GSK, Amgen, Servier, Lilly und Shire sowie Beraterhonorare von MSD, Lilly, Amgen, Servier und Shire.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Bassett JH, Williams GR (2008) Critical role of the hypothalamic-pituitary-thyroid axis in bone. Bone 43:418–426CrossRefPubMedGoogle Scholar
  2. 2.
    Bassett JH, Williams GR (2016) Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev 37:135–187CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gouveia CH, Schultz JJ, Bianco AC, Brent GA (2001) Thyroid hormone stimulation of osteocalcin gene expression in ROS 17/2.8 cells is mediated by transcriptional and post-transcriptional mechanisms. J Endocrinol 170:667–675CrossRefPubMedGoogle Scholar
  4. 4.
    Varga F, Rumpler M, Luegmayr E et al (1997) Triiodothyronine, a regulator of osteoblastic differentiation: depression of histone H4, attenuation of c‑fos/c-jun, and induction of osteocalcin expression. Calcif Tissue Int 61:404–411CrossRefPubMedGoogle Scholar
  5. 5.
    Banovac K, Koren E (2000) Triodothyronine stimulates the release of membrane-bound alkaline phosphatase in osteoblastic cells. Calcif Tissue Int 67:460–465CrossRefPubMedGoogle Scholar
  6. 6.
    Miura M, Tanaka K, Komatsu Y et al (2002) A novel interaction between thyroid hormones and 1,25(OH)(2)D(3) in osteoclast formation. Biochem Biophys Res Commun 291:987–994CrossRefPubMedGoogle Scholar
  7. 7.
    Tsourdi E, Rijntjes E, Köhrle J et al (2015) Hyperthyroidism and hypothyroidism in male mice and their effects on bone mass, bone turnover, and the Wnt inhibitors sclerostin and Dickkopf-1. Endocrinology 156:3517–3527CrossRefPubMedGoogle Scholar
  8. 8.
    Tsourdi E, Lademann F, Ominsky MS et al (2017) Sclerostin blockade and zoledronic acid improve bone mass and strength in male mice with exogenous hyperthyroidism. Endocrinology 158:3765–3777CrossRefPubMedGoogle Scholar
  9. 9.
    Salerno M, Micillo M, Di Maio S et al (2001) Longitudinal growth, sexual maturation and final height in patients with congenital hypothyroidism detected by neonatal screening. Eur J Endocrinol 145:377–383CrossRefPubMedGoogle Scholar
  10. 10.
    Rivkees SA, Bode HH, Crawford JD (1988) Long-term growth in juvenile acquired hypothyroidism: the failure to achieve normal adult stature. N Engl J Med 318:599–602CrossRefPubMedGoogle Scholar
  11. 11.
    Segni M, Leonardi E, Mazzoncini B (1999) Special features of Graves’ disease in early childhood. Thyroid 9:871–877CrossRefPubMedGoogle Scholar
  12. 12.
    Williams GR, Bassett JHD (2018) Thyroid diseases and bone health. J Endocrinol Invest 41:99–109CrossRefPubMedGoogle Scholar
  13. 13.
    Eriksen EF, Mosekilde L, Melsen F (1986) Kinetics of trabecular bone resorption and formation in hypothyroidism: evidence for a positive balance per remodeling cycle. Bone 7:101–108CrossRefPubMedGoogle Scholar
  14. 14.
    Vestergaard P, Mosekilde L (2002) Fractures in patients with hyperthyroidism and hypothyroidism: a nationwide follow-up study in 16,249 patients. Thyroid 12:411–419CrossRefPubMedGoogle Scholar
  15. 15.
    Vestergaard P, Rejnmark L, Mosekilde L (2005) Influence of hyper- and hypothyroidism, and the effects of treatment with antithyroid drugs and levothyroxine on fracture risk. Calcif Tissue Int 77:139–144CrossRefPubMedGoogle Scholar
  16. 16.
    Mosekilde L, Eriksen EF, Charles P (1990) Effects of thyroid hormones on bone and mineral metabolism. Endocrinol Metab Clin North Am 19:35–63PubMedCrossRefGoogle Scholar
  17. 17.
    Bours SP, van Geel TA, Geusens PP et al (2011) Contributors to secondary osteoporosis and metabolic bone diseases in patients presenting with a clinical fracture. J Clin Endocrinol Metab 96:1360–1367CrossRefPubMedGoogle Scholar
  18. 18.
    Flynn RW, Bonellie SR, Jung RT et al (2010) Serum thyroid-stimulating hormone concentration and morbidity from cardiovascular disease and fractures in patients on long-term thyroxine therapy. J Clin Endocrinol Metab 95:186–193CrossRefPubMedGoogle Scholar
  19. 19.
    Mosekilde L, Melsen F, Bagger JP et al (1977) Bone changes in hyperthyroidism: interrelationships between bone morphometry, thyroid function and calcium-phosphorus metabolism. Acta Endocrinol 85:515–525PubMedCrossRefGoogle Scholar
  20. 20.
    Pantazi H, Papapetrou PD (2000) Changes in parameters of bone and mineral metabolism during therapy for hyperthyroidism. J Clin Endocrinol Metab 85:1099–1106CrossRefPubMedGoogle Scholar
  21. 21.
    Vestergaard P, Mosekilde L (2003) Hyperthyroidism, bone mineral, and fracture risk—a meta-analysis. Thyroid 13:585–593CrossRefPubMedGoogle Scholar
  22. 22.
    Rosen CJ, Adler RA (1992) Longitudinal changes in lumbar bone density among thyrotoxic patients after attainment of euthyroidism. J Clin Endocrinol Metab 75:1531–1534PubMedGoogle Scholar
  23. 23.
    Blum MR, Bauer DC, Collet TH et al (2015) Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA 313:2055–2065CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yang R, Yao L, Fang Y et al (2018) The relationship between subclinical thyroid dysfunction and the risk of fracture or low bone mineral density: a systematic review and meta-analysis of cohort studies. J Bone Miner Metab 36:209–220CrossRefPubMedGoogle Scholar
  25. 25.
    Abrahamsen B, Jorgensen HL, Laulund AS et al (2015) Low serum thyrotropin level and duration of suppression as a predictor of major osteoporotic fractures-the OPENTHYRO register cohort. J Bone Miner Res 29:2040–2050CrossRefGoogle Scholar
  26. 26.
    Pujol P, Daures JP, Nsakala N et al (1996) Degree of thyrotropin suppression as a prognostic determinant in differentiated thyroid cancer. J Clin Endocrinol Metab 81:4318–4323PubMedGoogle Scholar
  27. 27.
    Uzzan B, Campos J, Cucherat M et al (1996) Effects on bone mass of long term treatment with thyroid hormones: a meta-analysis. J Clin Endocrinol Metab 81:4278–4289PubMedGoogle Scholar
  28. 28.
    Faber J, Galloe AM (1994) Changes in bone mass during prolonged subclinical hyperthyroidism due to l‑thyroxine treatment: a meta-analysis. Eur J Endocrinol 130:350–356CrossRefPubMedGoogle Scholar
  29. 29.
    Bauer DC, Ettinger B, Nevitt MC et al (2001) Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann Intern Med 134:561–568CrossRefPubMedGoogle Scholar
  30. 30.
    Williams GR (2014) Is prophylactic anti-resorptive therapy required in thyroid cancer patients receiving TSH-suppressive treatment with thyroxine? J Endocrinol Invest 37:775–779CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Bereich Endokrinologie, Diabetes und Knochenerkrankungen, Medizinische Klinik III, Universitätsklinikum Carl Gustav CarusTechnische Universität DresdenDresdenDeutschland
  2. 2.Zentrum für Gesundes Altern, Medizinische FakultätTechnische Universität DresdenDresdenDeutschland
  3. 3.MVZ Endokrinologikum GöttingenGöttingenDeutschland
  4. 4.Klinik für Gastroenterologie und gastrointestinale Onkologie, Klinik für Gastroenterologie und EndokrinologieUniversitätsmedizin GöttingenGöttingenDeutschland

Personalised recommendations