Advertisement

Der Internist

, Volume 57, Issue 12, pp 1243–1249 | Cite as

Targeted Therapy und Precision Medicine

Mehr als nur Schlagworte in der Therapie von Lungenkarzinomen
  • D. F. HeigenerEmail author
  • M. Horn
  • M. Reck
Arzneimitteltherapie

Zusammenfassung

Ein Anteil von 10 bis 15 % der nichtkleinzelligen Lungenkarzinome (NSCLC) proliferiert auf der Basis einer sogenannten Treibermutation. Diese molekulare Alteration hält das maligne Potenzial aufrecht und ist gezielt blockierbar. Neben Mutationen in EGFR, dem Gen des „epidermal growth factor receptor“, betrifft dies Translokationen zwischen den Genen des „echinoderm microtubule-associated protein-like 4“ (EML4) und der anaplastischen Lymphomkinase (ALK) sowie die Alteration im ROS1-Gen. Für die ersten beiden Alterationen stehen mittlerweile mehrere Generationen von Inhibitoren zur Verfügung. Für ROS1 und weitere Treibermutationen ist die Datenlage zurzeit noch recht spärlich, da sie beim NSCLC sehr selten vorkommen.

Schlüsselwörter

Nichtkleinzelliges Lungenkarzinom EGFR-Protein, human Anaplastische Lymphomkinase ROS1-Protein, human Treibermutation 

Targeted therapy and precision medicine

More than just words in the treatment of lung cancer

Abstract

Between 10 and 15 % of non-small cell lung cancers (NSCLC) proliferate due to the presence of a so-called driver mutation. This molecular alteration allows the cancer to continue to proliferate and can be deliberately inhibited. In addition to mutations in the epidermal growth factor receptor gene (EGFR) and translocations between the echinoderm microtubule-associated protein-like 4 gene (EML 4) and the anaplastic lymphoma kinase gene (ALK), this applies to ROS1 gene translocations. For the former two alterations, many inhibitors are already available, whereas for ROS1 and other driving mutations the evidence is sparse due to the rare occurrence of these mutations in NSCLC.

Keywords

Carcinoma, non-small-cell lung EGFR protein, human Anaplastic lymphoma kinase ROS1 protein, human Mutation, driver 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

D.F. Heigener und M. Reck erhielten Honorare für Vorträge und für das Mitwirken an Advisory Boards sowie Reisekostenerstattungen von Hoffmann-La Roche, Boehringer Ingelheim, Pfizer, Novartis, AstraZeneca, MSD und Bristol-Myers Squibb. M. Horn gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Barlesi F, Mazieres J, Merlio JP et al (2016) Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1‑year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). Lancet 387:1415–1426CrossRefPubMedGoogle Scholar
  2. 2.
    Cross DA, Ashton SE, Ghiorghiu S et al (2014) AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 4:1046–1061CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Elleraas J, Ewanicki J, Johnson TW et al (2016) Conformational studies and atropisomerism kinetics of the ALK clinical candidate lorlatinib (PF-06463922) and desmethyl congeners. Angew Chem Int Ed Engl 55:3590–3595CrossRefPubMedGoogle Scholar
  4. 4.
    Felip E, Crino L, Kim DW et al (2016) 141PD: Whole body and intracranial efficacy of ceritinib in patients (pts) with crizotinib (CRZ) pretreated, ALK-rearranged (ALK+) non-small cell lung cancer (NSCLC) and baseline brain metastases (BM): results from ASCEND-1 and ASCEND-2 trials. J Thorac Oncol 11:S118–119CrossRefPubMedGoogle Scholar
  5. 5.
    Fenizia F, De Luca A, Pasquale R et al (2015) EGFR mutations in lung cancer: from tissue testing to liquid biopsy. Future Oncol 11:1611–1623CrossRefPubMedGoogle Scholar
  6. 6.
    Friboulet L, Li N, Katayama R et al (2014) The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov 4:662–673CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gadgeel SM, Gandhi L, Riely GJ et al (2014) Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol 15:1119–1128CrossRefPubMedGoogle Scholar
  8. 8.
    Heigener DF, Schumann C, Sebastian M et al (2015) Afatinib in non-small cell lung cancer harboring uncommon EGFR mutations pretreated with reversible EGFR inhibitors. Oncologist 20:1167–1174CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Janne PA, Ou SH, Kim DW et al (2014) Dacomitinib as first-line treatment in patients with clinically or molecularly selected advanced non-small-cell lung cancer: a multicentre, open-label, phase 2 trial. Lancet Oncol 15:1433–1441CrossRefPubMedGoogle Scholar
  10. 10.
    Janne PA, Yang JC, Kim DW et al (2015) AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 372:1689–1699CrossRefPubMedGoogle Scholar
  11. 11.
    Katayama R, Sakashita T, Yanagitani N et al (2016) P‑glycoprotein mediates ceritinib resistance in anaplastic lymphoma kinase-rearranged non-small cell lung cancer. EBioMedicine 3:54–66CrossRefPubMedGoogle Scholar
  12. 12.
    Kim DW, Kim SW, Kim TM et al (2013) Phase I study of HM61713, a novel epidermal growth factor receptor (EGFR) mutant selective inhibitor, in non-small cell lung cancer (NSCLC) patients having an activating EGFR mutation but failed to prior EGFR tyrosine kinase inhibitor (TKI) therapy. 15th World Conference on Lung Cancer (WCLC), Abstract 1048, Poster P2.11–010, Sydney.Google Scholar
  13. 13.
    Kim DW, Mehra R, Tan DS et al (2016) Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): updated results from the multicentre, open-label, phase 1 trial. Lancet Oncol 17:452–463CrossRefPubMedGoogle Scholar
  14. 14.
    Kim DW, Tiseo M, Ahn MJ et al (2016) Brigatinib (BRG) in patients (pts) with crizotinib (CRZ)-refractory ALK+ non-small cell lung cancer (NSCLC): first report of efficacy and safety from a pivotal randomized phase (ph) 2 trial (ALTA). J Clin Oncol 34:7s (Suppl March 1; Abstr. 9007)Google Scholar
  15. 15.
    Kwak EL, Bang YJ, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lee C, Davies LC, Wu YW et al (2015) The impact on overall survival (OS) of first-line gefitinib (G) and erlotinib (E) and of clinical factors in advanced non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor mutations (EGFR mut) based on meta-analysis of 1,231 patients (pts) enrolled in 6 major randomized trials. J Clin Oncol 33:15s (Suppl May 18; Abstr. 8072)Google Scholar
  17. 17.
    Lee J, Park K, Han J et al (2015) Clinical activity and safety of the EGFR mutant-specific inhibitor, BI1482694, in patients (pts) with T790M-positive NSCLC. In: ESMO Asia. ESMO, SingaporeGoogle Scholar
  18. 18.
    Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139CrossRefPubMedGoogle Scholar
  19. 19.
    Mok TS, Wu YL, Thongprasert S et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957CrossRefPubMedGoogle Scholar
  20. 20.
    Niederst MJ, Sequist LV, Poirier JT et al (2015) RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat Commun 6:6377CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nokihara H, Hida T, Kondo M et al (2016) Alectinib (ALC) versus crizotinib (CRZ) in ALK-inhibitor naive ALK-positive non-small cell lung cancer (ALK+ NSCLC): primary results from the J‑ALEX study. J Clin Oncol 34:7s (Suppl March 1; Abstr. 9008)Google Scholar
  22. 22.
    Park K, Tan EH, Zhang L et al (2015) Afatinib versus gefitinib as first-line treatment for patients with advanced non-small cell lung cancer harboring activating EGFR mutations: Lux-Lung 7. In: ESMO ASIA. ESMO, SingaporeGoogle Scholar
  23. 23.
    Pecuchet N, Legras A, Laurent-Puig P et al (2016) Lung cancer molecular testing, what role for Next Generation Sequencing and circulating tumor DNA. Ann Pathol 36:80–93CrossRefPubMedGoogle Scholar
  24. 24.
    Ramalingam SS, Janne PA, Mok T et al (2014) Dacomitinib versus erlotinib in patients with advanced-stage, previously treated non-small-cell lung cancer (ARCHER 1009): a randomised, double-blind, phase 3 trial. Lancet Oncol 15:1369–1378CrossRefPubMedGoogle Scholar
  25. 25.
    Reck M, Heigener DF, Mok T et al (2013) Management of non-small-cell lung cancer: recent developments. Lancet 382:709–719CrossRefPubMedGoogle Scholar
  26. 26.
    Rosell R, Gettinger SN, Bazhenova LA et al (2016) 1330: Brigatinib efficacy and safety in patients (Pts) with anaplastic lymphoma kinase (ALK)-positive (ALK+) non-small cell lung cancer (NSCLC) in a phase 1/2 trial. J Thorac Oncol 11:S114CrossRefPubMedGoogle Scholar
  27. 27.
    Sequist LV, Waltman BA, Dias-Santagata D et al (2011) Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 3:75ra26CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sequist LV, Yang JC, Yamamoto N et al (2013) Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 31:3327–3334CrossRefPubMedGoogle Scholar
  29. 29.
    Seto T, Kato T, Nishio M et al (2014) Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol 15:1236–1244CrossRefPubMedGoogle Scholar
  30. 30.
    Shaw AT, Friboulet L, Leshchiner I et al (2016) Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N Engl J Med 374:54–61CrossRefPubMedGoogle Scholar
  31. 31.
    Shaw AT, Kim DW, Mehra R et al (2014) Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 370:1189–1197CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Smith GD, Chadwick BE, Willmore-Payne C et al (2008) Detection of epidermal growth factor receptor gene mutations in cytology specimens from patients with non-small cell lung cancer utilising high-resolution melting amplicon analysis. J Clin Pathol 61:487–493CrossRefPubMedGoogle Scholar
  33. 33.
    Soda M, Choi YL, Enomoto M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566CrossRefPubMedGoogle Scholar
  34. 34.
    Sullivan I, Planchard D (2016) Treatment modalities for advanced ALK-rearranged non-small-cell lung cancer. Future Oncol 12:945–961CrossRefPubMedGoogle Scholar
  35. 35.
    Von Laffert M, Schirmacher P, Warth A et al (2016) Statement of the German Society for Pathology and the working group thoracic oncology of the working group oncology/German Cancer Society on ALK testing in NSCLC : Immunohistochemistry and/or FISH? Pathologe 37:187–192CrossRefGoogle Scholar
  36. 36.
    Walter AO, Sjin RT, Haringsma HJ et al (2013) Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov 3:1404–1415CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wu J, Savooji J, Liu D (2016) Second- and third-generation ALK inhibitors for non-small cell lung cancer. J Hematol Oncol 9:19CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wu YL, Zhou C, Hu CP et al (2014) Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol 15:213–222CrossRefPubMedGoogle Scholar
  39. 39.
    Yang J, Sequist L, Schuler M et al (2014) Overall survival (OS) in patients (pts) with advanced non-small cell lung cancer (NSCLC) harboring common (Del19/L858R) epidermal growth factor receptor mutations (EGFR mut): Pooled analysis of two large open-label phase III studies (LUX-Lung 3 [LL3] and LUX-Lung 6 [LL6]) comparing afatinib with chemotherapy (CT). J Clin Oncol 32:5s (Suppl May 20; Abstr. 8004)CrossRefGoogle Scholar
  40. 40.
    Yang JC, Sequist LV, Geater SL et al (2015) Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol 16:830–838CrossRefPubMedGoogle Scholar
  41. 41.
    Yang JC, Shih JY, Su WC et al (2012) Afatinib for patients with lung adenocarcinoma and epidermal growth factor receptor mutations (LUX-Lung 2): a phase 2 trial. Lancet Oncol 13:539–548CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Onkologischer SchwerpunktLungenClinic GrosshansdorfGroßhansdorfDeutschland

Personalised recommendations