Der Internist

, Volume 55, Issue 8, pp 889–897 | Cite as

Mikrobiom und Ernährung

Therapie der Zukunft für chronisch-entzündliche Darmerkrankungen?
Schwerpunkt

Zusammenfassung

Das komplexe Mikrobiom des menschlichen Darms enthält eine mehr als hundertfach größere genetische Information als das menschliche Genom. Die Zusammensetzung des Mikrobioms ist bei Patienten mit chronisch-entzündlichen Darmerkrankungen in erheblicher Weise verändert: Die Diversität ist reduziert, zudem sind einzelne bakterielle Phyla über- oder unterrepräsentiert. Weit wichtiger als die nominelle Zusammensetzung ist jedoch die summierte funktionelle Leistungsfähigkeit der Mikroflora, die von der Bereitstellung einzelner Stoffwechselprodukte aus dem Lipid- oder Aminosäurebereich bis zur Produktion komplexer regulatorischer Substanzen reicht. Mit modernen pharmakologischen Entwicklungen wird versucht, die funktionelle Zusammensetzung des intestinalen Mikrobioms günstig zu beeinflussen. Eine wesentliche Strategie ist die Entwicklung pharmakologischer Formulierungen von einzelnen Lipiden, Kohlenhydraten (insbesondere komplexen Zuckerverbindungen) oder Aminosäuren zur kontrollierten Freisetzung in spezifischen Darmabschnitten distal der Resorptionszonen des oberen Gastrointestinaltrakts.

Schlüsselwörter

Morbus Crohn Colitis ulcerosa Immunnutrition Probiotika Entzündung 

Microbiome and nutrition

The way to a future therapy for chronic inflammatory bowel diseases?

Abstract

The complex microbiome of the human gut contains an excessive amount of genetic information that is more than 100-fold larger than the human genome. In patients with inflammatory bowel disease diversity of the gut microbiome is significantly reduced and moreover specific phyla are overrepresented or underrepresented. However, the functional capacity of the microflora to generate certain metabolic products containing lipids or amino acids- and more complex regulatory substances is more important that the mere annotation of the microorganisms. Modern pharmacological approaches target the functional capacity and constitution of the microbiome. An important strategy is the development of controlled release formulations that deliver defined lipid, carbohydrate or amino acid products derived from nutritional components targeting gut areas distal to the absorption zones of the upper gastrointestinal tract.

Keywords

Crohn‘s disease Colitis, ulcerative Immunonutrition Probiotics Inflammation 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt. S. Schreiber: Teilnahme an einer klinischen Studie zu Phosphatidylcholin bei Colitis ulcerosa. P. Rosenstiel und S. Schreiber: Beratungstätigkeit für Pfizer, Ferring und Conaris. S. Schreiber: Aktieneigentum: Conaris AG. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Schreiber S, Rosenstiel P, Franke A (2014) Genetic etiology of chronic inflammatory bowel disease. Internist (Berl) 55(2):156–164Google Scholar
  2. 2.
    Cosnes J, Gower-Rousseau C, Seksik P, Cortot A (2011) Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 140:1785–1794PubMedCrossRefGoogle Scholar
  3. 3.
    Ott SJ, Musfeldt M, Wenderoth DF et al (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53:685–693PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Rehman A, Zvirbliene A, Begun A et al (2011) Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 141(1):227–236PubMedCrossRefGoogle Scholar
  5. 5.
    Koch R (1884) Die Ätiologie der Tuberkulose. In: Mitteilungen aus dem Kaiserlichen Gesundheitsamte 2:1–88Google Scholar
  6. 6.
    Morgan XC, Tickle TL, Sokol H et al (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13(9):R79PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Kühbacher T, Ott SJ, Helwig U et al (2006) Bacterial and fungal microbiota in relation to probiotic therapy (VSL#3) in pouchitis. Gut 55(6):833–841PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Kruis W, Fric P, Pokrotnieks J et al (2004) Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53(11):1617–1623PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Floch MH, Walker WA, Madsen K et al (2011) Recommendations for probiotic use-2011 update. J Clin Gastroenterol 45(Suppl):S168–S171Google Scholar
  10. 10.
    Brenner DM, Moeller MJ, Chey WD, Schoenfels PS (2009) The utility of probiotics in the treatment of irritable bowel syndrome: a systematic review. Am J Gastroenterol 104:1033–1049PubMedCrossRefGoogle Scholar
  11. 11.
    Allen SJ, Martinez EG, Gregorio GV, Dans LF (2010) Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst Rev:CD003048Google Scholar
  12. 12.
    Allen SJ, Okoko B, Martinez E et al (2004) Probiotics for treating infectious diarrhoea. Cochrane Database Syst Rev:CD003048. (Review. Update in: Cochrane Database Syst Rev 2010;(11):CD003048)Google Scholar
  13. 13.
    Wang W, Chen L, Zhou R et al (2014) Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J Clin Microbiol 52(2):398–406Google Scholar
  14. 14.
    Scheppach W (1996) Treatment of distal ulcerative colitis with short-chain fatty acid enemas. A placebo-controlled trial. German-Austrian SCFA Study Group. Dig Dis Sci 41(11):2254–2259PubMedCrossRefGoogle Scholar
  15. 15.
    Steinhart AH, Hiruki T, Brzezinski A, Baker JP (1996) Treatment of left-sided ulcerative colitis with butyrate enemas: a controlled trial. Aliment Pharmacol Ther 10(5):729–736PubMedCrossRefGoogle Scholar
  16. 16.
    Fernández-Bañares F, Hinojosa J, Sánchez-Lombraña JL et al (1999) Randomized clinical trial of Plantago ovata seeds (dietary fiber) as compared with mesalamine in maintaining remission in ulcerative colitis. Spanish Group for the Study of Crohn’s Disease and Ulcerative Colitis (GETECCU). Am J Gastroenterol 94(2):427–433PubMedCrossRefGoogle Scholar
  17. 17.
    Hallert C, Björck I, Nyman M et al (2003) Increasing fecal butyrate in ulcerative colitis patients by diet: controlled pilot study. Inflamm Bowel Dis 9(2):116–121PubMedCrossRefGoogle Scholar
  18. 18.
    Wedlake L, Slack N, Andreyev HJ, Whelan K (2014) Fiber in the treatment and maintenance of inflammatory bowel disease: a systematic review of randomized controlled trials. Inflamm Bowel Dis 20(3):576–586PubMedCrossRefGoogle Scholar
  19. 19.
    Kim MH, Kang SG, Park JH et al (2013) Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145(2):396–406.e1–10PubMedCrossRefGoogle Scholar
  20. 20.
    Maslowski KM, Vieira AT, Ng A et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461(7268):1282–1286PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Sina C, Gavrilova O, Förster M et al (2009) G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J Immunol 183(11):7514–7522Google Scholar
  22. 22.
    Singh N, Gurav A, Sivaprakasam S et al (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40(1):128–139PubMedCrossRefGoogle Scholar
  23. 23.
    Brown JM, Hazen SL (2014) Metaorganismal nutrient metabolism as a basis of cardiovascular disease. Curr Opin Lipidol 25(1):48–53PubMedCrossRefGoogle Scholar
  24. 24.
    Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Tang WH, Wang Z, Levison BS et al (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368(17):1575–1584PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Swidsinski A, Ladhoff A, Pernthaler A et al (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122(1):44–54PubMedCrossRefGoogle Scholar
  27. 27.
    Ehehalt R, Wagenblast J, Erben G et al (2004) Phosphatidylcholine and lysophosphatidylcholine in intestinal mucus of ulcerative colitis patients. A quantitative approach by nanoElectrospray-tandem mass spectrometry. Scand J Gastroenterol 39(8):737–742PubMedCrossRefGoogle Scholar
  28. 28.
    Stremmel W, Gauss A (2013) Lecithin as a therapeutic agent in ulcerative colitis. Dig Dis 31(3–4):388–390Google Scholar
  29. 29.
    Karner M, Kocjan A, Stein J et al (2014) First multicenter study of modified release phosphatidylcholine „LT-02“ in ulcerative colitis: a randomized, placebo-controlled trial in mesalazine-refractory courses. Am J Gastroenterol (im Druck). DOI 10.1038/ajg.2014.104Google Scholar
  30. 30.
    Puiman P, Stoll B, Mølbak L et al (2013) Modulation of the gut microbiota with antibiotic treatment suppresses whole body urea production in neonatal pigs. Am J Physiol Gastrointest Liver Physiol 304(3):G300–G310PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Libao-Mercado AJ, Zhu CL, Cant JP et al (2009) Dietary and endogenous amino acids are the main contributors to microbial protein in the upper gut of normally nourished pigs. J Nutr 139(6):1088–1094Google Scholar
  32. 32.
    Bartz S, Mody A, Hornik C et al (2014) Severe acute malnutrition in childhood: hormonal and metabolic status at presentation, response to treatment, and predictors of mortality. J Clin Endocrinol Metab 99(6):2128–2137Google Scholar
  33. 33.
    Xue H, Sufit AJ, Wischmeyer PE (2011) Glutamine therapy improves outcome of in vitro and in vivo experimental colitis models. JPEN J Parenter Enteral Nutr 35(2):188–197PubMedCrossRefGoogle Scholar
  34. 34.
    Ockenga J, Borchert K, Stüber E et al (2005) Glutamine-enriched total parenteral nutrition in patients with inflammatory bowel disease. Eur J Clin Nutr 59(11):1302–1309PubMedCrossRefGoogle Scholar
  35. 35.
    Zelante T, Iannitti RG, Cunha C et al (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39(2):372–385PubMedCrossRefGoogle Scholar
  36. 36.
    Vujkovic-Cvijin I, Dunham RM, Iwai S et al (2013) Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med 5(193):193ra91PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Hashimoto T, Perlot T, Rehman A et al (2012) ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487(7408):477–481PubMedCrossRefGoogle Scholar
  38. 38.
    Takamatsu M, Hirata A, Ohtaki H et al (2013) IDO1 plays an immunosuppressive role in 2,4,6-trinitrobenzene sulfate-induced colitis in mice. J Immunol 191(6):3057–3064Google Scholar
  39. 39.
    Nikolaus S, Al-Massach N, Bethge J et al (2014) Tryptophan deficiency in Crohn disease. Poster 306, Annual Meeting of the European Association for Crohn and Colitis (ECCO), Kopenhagen, 20.–22. Februar 2014Google Scholar
  40. 40.
    Turski MP, Turska M, Paluszkiewicz P et al (2013) Kynurenic acid in the digestive system-new facts, new challenges. Int J Tryptophan Res 6:47–55PubMedCentralPubMedGoogle Scholar
  41. 41.
    Oxenkrug GF (2010) Metabolic syndrome, age-associated neuroendocrine disorders, and dysregulation of tryptophan-kynurenine metabolism. Ann N Y Acad Sci 1199:1–14PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Klinik für Innere Medizin IUniversitätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu KielKielDeutschland
  2. 2.Institut für Klinische MolekularbiologieUniversitätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu KielKielDeutschland

Personalised recommendations