Der Internist

, Volume 50, Issue 6, pp 748–756

Patientensicherheit durch computerbasierte Arzneimittelinformationen

Der Patient im elektronischen Check-up
Arzneimitteltherapie
  • 129 Downloads

Zusammenfassung

Bei internistischen Patienten sind unerwünschte Arzneimittelereignisse häufig. Viele solche Ereignisse sind allerdings vermeidbar, da sie durch Medikationsfehler verursacht werden. Diese treten besonders häufig bei der Arzneimittelverordnung auf. Es bedarf deshalb praxisnaher Konzepte, um das wachsende Wissen zu Arzneimitteln beim Verordnungsprozess verfügbar zu machen. Aber auch wenn Abweichungen vom Standard beabsichtigt sind, muss schnell auf aktuelle Informationen zugegriffen werden können. Computerbasierte Systeme können zu all diesen Anforderungen eine Unterstützung in der Arzneimittelverschreibung für den Arzt leisten und so die Qualität der Pharmakotherapie verbessern. Dazu müssen solche Systeme allerdings untereinander und sektorenübergreifend vernetzt sein, auf wissenschaftlichen Daten basieren und möglichst viele Faktoren für eine patientenindividuelle Therapie berücksichtigen. Die Individualisierung und Fokussierung auf die relevanten Informationen sind besonders wichtige Charakteristika, um unzutreffende Warnhinweise (Overalerting) zu verhindern und damit die Akzeptanz in der praktischen Nutzung zu erhöhen.

Schlüsselwörter

Computerunterstützte Arzneimitteltherapie Arzneimittelverschreibung Dosisberechnung Arzneimittelinteraktionen Nierenfunktionsstörung 

Patient safety based on computer-assisted drug therapy

Electronic check-up of the patient

Abstract

Patients in internal medicine frequently experience adverse drug events. Many of those events, however, are avoidable because they are caused by medication errors, which are particularly frequent in drug prescribing. Therefore, practical concepts are needed to make the rapidly growing knowledge on drugs available already during prescription. But also when deviations from standards are intended access to up-to-date information is required. Computer-based systems can offer support for prescribing clinicians to meet these claims and thus improve the quality of pharmacotherapy. To reach this goal, such systems have to be interlinked among each other and with systems of primary, secondary, and tertiary care. They must be based on scientific published evidence and should consider as many factors as possible for individualization of drug therapy. Individualization and focusing on relevant information are prerequisites to prevent inappropriate alerts (over-alerting) and thus to increase acceptance in practical use.

Keywords

Computer-assisted drug therapy Prescriptions Dosage calculations Drug interactions Renal insufficiency 

Literatur

  1. 1.
    Abteilung Innere Medizin VI, Klinische Pharmakologie und Pharmakoepidemiologie, Universitätsklinikum Heidelberg, Dosisanpassung bei Niereninsuffizienz. http://www.dosing.de
  2. 2.
    American Hospital Association, American Society of Health-System Pharmacists, Hospitals & Health Networks (2005) Medication safety issue brief, Look-alike, sound-alike drugs. Hosp Health Netw 79: 57–58Google Scholar
  3. 3.
    Bates DW, Cullen DJ, Laird N et al. (1995) Incidence of adverse drug events and potential adverse drug events. Implications for prevention. JAMA 274: 29–34PubMedCrossRefGoogle Scholar
  4. 4.
    Bates DW, Leape LL, Cullen DJ et al. (1998) Effect of computerized physician order entry and a team intervention on prevention of serious medication errors. JAMA 280: 1311–1316PubMedCrossRefGoogle Scholar
  5. 5.
    Bates DW, Spell N, Cullen DJ et al. (1997) The costs of adverse drug events in hospitalized patients. Adverse Drug Events Prevention Study Group. JAMA 277: 307–311PubMedCrossRefGoogle Scholar
  6. 6.
    Bates DW, Teich JM, Lee J et al. (1999) The impact of computerized physician order entry on medication error prevention. J Am Med Inform Assoc 6: 313–321PubMedGoogle Scholar
  7. 7.
    Bergk V, Gasse C, Schnell R, Haefeli WE (2004) Requirements for a successful implementation of drug interaction information systems in general practice: Results of a questionnaire survey in Germany. Eur J Clin Pharmacol 60: 595–602PubMedCrossRefGoogle Scholar
  8. 8.
    Bergk V, Haefeli WE, Gasse C et al. (2005) Information deficits in the summary of product characteristics preclude an optimal management of drug interactions: A comparison with evidence from the literature. Eur J Clin Pharmacol 61: 327–335PubMedCrossRefGoogle Scholar
  9. 9.
    Bertsche T, Fleischer M, Pfaff J et al. (2009) Pro-active provision of drug information as a technique to address overdosing in intensive-care patients with renal insufficiency. Eur J Clin Pharmacol [Epub ahead of print]Google Scholar
  10. 10.
    Bertsche T, Mayer Y, Stahl R et al. (2008) Prevention of intravenous drug incompatibilities in an intensive care unit. Am J Health Syst Pharm 65: 1834–1840PubMedCrossRefGoogle Scholar
  11. 11.
    Bertsche T, Münk L, Mayer Y et al. (2009) Sustained effect of implementation of a standard operation procedure to prevent intravenous drug incompatibilities in an intensive care unit after one year. Am J Health Syst Pharm (in press)Google Scholar
  12. 12.
    Bertsche T, Walk SU, Kaltschmidt J et al. (2008) Arzneimitteltherapie an intersektoralen Schnittstellen - Lösungsstrategien zur Qualitätssicherung. Krankenhauspharmazie 29: 163–166Google Scholar
  13. 13.
    Bond CA, Raehl CL, Franke T (2000) Clinical pharmacy services, pharmacy staffing, and the total cost of care in United States hospitals. Pharmacotherapy 20: 609–621PubMedCrossRefGoogle Scholar
  14. 14.
    Bond CA, Raehl CL, Pitterle ME, Franke T (1999) Health care professional staffing, hospital characteristics, and hospital mortality rates. Pharmacotherapy 19: 130–138PubMedCrossRefGoogle Scholar
  15. 15.
    Chertow GM, Lee J, Kuperman GJ et al. (2001) Guided medication dosing for inpatients with renal insufficiency. JAMA 286: 2839–2844PubMedCrossRefGoogle Scholar
  16. 16.
    Classen DC, Pestotnik SL, Evans RC et al. (1997) Adverse drug events in hospitalized patients. Excess length of stay, extra costs and attributable mortality. JAMA 277: 301–306PubMedCrossRefGoogle Scholar
  17. 17.
    Classen DC, Pestotnik SL, Evans RS, Burke JP (1991) Computerized surveillance of adverse drug events in hospital patients. JAMA 266: 2847–2851PubMedCrossRefGoogle Scholar
  18. 18.
    Cullen DJ, Sweitzer BJ, Bates DW et al. (1997) Preventable adverse drug events in hospitalized patients: A comparative study of intensive care and general care units. Crit Care Med 25: 1289–1297PubMedCrossRefGoogle Scholar
  19. 19.
    Dartnell JG, Anderson RP, Chohan V et al. (1996) Hospitalisation for adverse events related to drug therapy: Incidence, avoidability and costs. Med J Aust 164: 659–662PubMedGoogle Scholar
  20. 20.
    Davidsen F, Haghfelt T, Gram LF, Brosen K (1988) Adverse drug reactions and drug non-compliance as primary causes of admission to a cardiology department. Eur J Clin Pharmacol 34: 83–86PubMedCrossRefGoogle Scholar
  21. 21.
    Einarson TR (1993) Drug related hospital admissions. Ann Pharmacother 27: 832–840PubMedGoogle Scholar
  22. 22.
    Evans RS, Pestotnik SL, Classen DC et al. (1998) A computer-assisted management program for antibiotics and other antiinfective agents. N Engl J Med 338: 232–238PubMedCrossRefGoogle Scholar
  23. 23.
    Falconnier AD, Haefeli WE, Schoenenberger RA et al. (2001) Drug dosage in patients with renal failure optimized by immediate concurrent feedback. J Gen Intern Med 16: 369–375PubMedCrossRefGoogle Scholar
  24. 24.
    Ferner RE, Aronson JK (2000) Medication errors, worse than a crime. Lancet 355: 947–948PubMedCrossRefGoogle Scholar
  25. 25.
    Ferner RE, Aronson JK (2006) Clarification of terminology in medication errors: Definitions and classification. Drug Saf 29: 1011–1022PubMedCrossRefGoogle Scholar
  26. 26.
    Garg AX, Adhikari NK, McDonald H et al. (2005) Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: A systematic review. JAMA 293: 1223–1238PubMedCrossRefGoogle Scholar
  27. 27.
    Greenhalgh T, Hughes J, Humphrey C et al. (2002) A comparative case study of two models of a clinical informaticist service. BMJ 324: 524–529PubMedCrossRefGoogle Scholar
  28. 28.
    Han YY, Carcillo JA, Venkataraman ST et al. (2005) Unexpected increased mortality after implementation of a commercially sold computerized physician order entry system. Pediatrics 16: 1506–1512CrossRefGoogle Scholar
  29. 29.
    Horlen C, Malone R, Bryant B et al. (2002) Frequency of inappropriate metformin prescriptions. JAMA 287: 2504–2505PubMedCrossRefGoogle Scholar
  30. 30.
    Janchawee B, Wongpoowarak W, Owatranporn T, Chongsuvivatwong V (2005) Pharmacoepidemiologic study of potential drug interactions in outpatients of a university hospital in Thailand. J Clin Pharm Ther 30: 13–20PubMedCrossRefGoogle Scholar
  31. 31.
    Knaup P, Pilz J, Kaltschmidt J et al. (2006) Standardized documentation of drug recommendations in discharge letters: A contribution to quality management in cooperative care. Methods Inf Med 45: 336–342PubMedGoogle Scholar
  32. 32.
    Kohler GI, Bode-Boeger SM, Busse R et al. (2000) Drug-drug interactions in medical patients: Effects of in-hospital treatment and relation to multiple drug use. Int J Clin Pharmacol Ther 38: 504–513PubMedGoogle Scholar
  33. 33.
    Koppel R, Metlay JP, Cohen A et al. (2005) Role of computerized physician order entry systems in facilitating medication errors. JAMA 293: 1197–1203PubMedCrossRefGoogle Scholar
  34. 34.
    Leape LL, Cullen DJ, Clapp MD et al. (1999) Pharmacist participation on physician rounds and adverse drug events in the intensive care unit. JAMA 282: 267–270PubMedCrossRefGoogle Scholar
  35. 35.
    Linnarsson R (1993) Drug interactions in primary health care. A retrospective database study and its implications for the design of a computerized decision support system. Scand J Prim Health Care 11: 181–186PubMedCrossRefGoogle Scholar
  36. 36.
    Martin-Facklam M, Rengelshausen J, Tayrouz Y et al. (2005) Dose individualisation in patients with renal insufficiency: Does drug labelling support optimal management? Eur J Clin Pharmacol 60: 807–811PubMedCrossRefGoogle Scholar
  37. 37.
    McCoy LK (2005) Look-alike, sound-alike drugs review: Include look-alike packaging as an additional safety check. Jt Comm J Qual Patient Saf 31: 47–53PubMedGoogle Scholar
  38. 38.
    Nebeker JR, Hoffman JM, Weir CR et al. (2005) High rates of adverse drug events in a highly computerized hospital. Arch Intern Med 165: 1111–1116PubMedCrossRefGoogle Scholar
  39. 39.
    Nelson KM, Talbert RL (1996) Drug related hospital admissions. Pharmacotherapy 16: 701–707PubMedGoogle Scholar
  40. 40.
    Pargeon KL, Hailey BJ (1999) Barriers to effective cancer pain management: A review of the literature. J Pain Symptom Manage 18: 358–368PubMedCrossRefGoogle Scholar
  41. 41.
    Pestotnik SL, Classen DC, Evans RS et al. (1993) Prospective surveillance of imipenem/cilastatin use and associated seizures using a hospital information system. Ann Pharmacother 27: 497–501PubMedGoogle Scholar
  42. 42.
    Quinzler R, Gasse C, Schneider A et al. (2006) The frequency of inappropriate pill splitting in primary care. Eur J Clin Pharmacol 62: 1065–1073PubMedCrossRefGoogle Scholar
  43. 43.
    Raschetti R, Morgutti M, Menniti-Ippolito F et al. (1999) Suspected adverse drug events requiring emergency department visits or hospital admissions. Eur J Clin Pharmacol 54: 959–963PubMedCrossRefGoogle Scholar
  44. 44.
    Raschke RA, Gollihare B, Wunderlich TA, Guidry JR et al. (1998) A computer alert system to prevent injury from adverse drug events: Development and evaluation in a community teaching hospital. JAMA 280: 1317–1320PubMedCrossRefGoogle Scholar
  45. 45.
    Rivkin A (2007) Admissions to a medical intensive care unit related to adverse drug reactions. Am J Health Syst Pharm 64: 1840–1843PubMedCrossRefGoogle Scholar
  46. 46.
    Salomon L, Deray G, Jaudon MC et al. (2003) Medication misuse in hospitalized patients with renal impairment. Int J Qual Health Care 15: 331–335PubMedCrossRefGoogle Scholar
  47. 47.
    Schneeweiss S, Hasford J, Gottler M et al. (2002) Admissions caused by adverse drug events to internal medicine and emergency departments in hospitals: A longitudinal population-based study. Eur J Clin Pharmacol 58: 285–291PubMedCrossRefGoogle Scholar
  48. 48.
    Schulmeister L (2006) Look-alike, sound-alike oncology medications. Clin J Oncol Nurs 10: 35–41PubMedCrossRefGoogle Scholar
  49. 49.
    Walk SU, Bertsche T, Kaltschmidt J et al. (2008) Rule-based standardised switching of drugs at the interface between primary and tertiary care. Eur J Clin Pharmacol 64: 319–327PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.Abteilung Innere Medizin VI, Klinische Pharmakologie und PharmakoepidemiologieUniversitätsklinikum HeidelbergHeidelbergDeutschland

Personalised recommendations