Der Internist

, Volume 50, Issue 6, pp 676–684

Autoinflammatorische Syndrome

Schwerpunkt: Fieber unklarer Genese

Zusammenfassung

Unter dem Begriff „autoinflammatorische Syndrome“ werden hereditäre periodische Fiebersyndrome (HPF) verstanden, die durch Mutationen von Mustererkennungsrezeptoren („pattern-recognition receptors“, PRR) und Störungen der Zytokingeneration und -balance hervorgerufen werden. Zu ihnen zählen die Cyropyrinopathien, das familiäre Mittelmeerfieber, das TNF-Rezeptor-assoziierte periodische Fiebersyndrom (TRAPS), das Hyper-IgD- und periodisches Fieber-Syndrom (HIDS), die pyogene sterile Arthritis, das Pyoderma-gangraenosum- und Akne- (PAPA-) Syndrom, das NALP12-HPF und das Blau-Syndrom. Pathophysiologisches Kennzeichen ist eine spontane Aktivierung von Zellen der angeborenen Immunität in Abwesenheit von Liganden. Autoantikörper sind in der Regel nicht nachweisbar. Klinisch sind HPF durch rezidivierende Fieberepisoden und Entzündung, insbesondere seröser und synovialer Grenzflächen sowie der Haut gekennzeichnet. Interessanterweise spielen PRR-vermittelte, autoinflammatorische Vorgänge auch bei verschiedenen chronisch-entzündlichen und autoimmunen Erkrankungen eine Rolle.

Schlüsselwörter

Autoinflammation Hereditäres periodisches Fieber NALP3 Chronische Entzündung Autoimmunität 

Abkürzungen

ASC

Apoptosis associated speck-like protein with a caspase recruitment Domain

CINCA

Chronic infantile neurological cutaneous and articular syndrome

DAMP

Danger-assoziiertes molekulares Muster

FCAS

Familial cold autoinflammatory syndrome

FMF

Familiäres Mittelmeerfieber

HIDS

Hyper-IgD- und periodisches Fieber-Syndrom (HIDS)

IL

Interleukin

INF

Interferon

MWS

Muckle-Wells-Syndrom

NALP

NACHT-, LRR- and pyrin-domain-containing protein

NLR

NOD-like-Rezeptor

NLRP

Nucleoitid-binding oligomerization-domain protein (NOD)-like receptor family, pyrin domain containing

NOD

Nucleoitid-binding oligomerization-domain protein

NOMID

Neonatal-onset multisystem inflammatory disease

PAMP

Pathogenassoziiertes molekulares Muster (PAMP)

PAPA

Pyogene sterile Arthritis, Pyoderma-gangraenosum- und Akne-Syndrom

PRR

Pattern-recognition receptor, Mustererkenungsrezeptor

SAA

Serumamyloid A

TLR

Toll-like-Rezeptor

TNF

Tumornekrosefaktor

TRAPS

TNF-Rezeptor-assoziiertes periodisches Syndrom

Autoinflammatory syndromes

Abstract

In its strict sense, the term “autoinflammatory syndromes” comprises the hereditary periodic fever syndromes (HPF), which are caused by mutations of pattern-recognition receptors (PRR) and perturbations of the cytokine balance. These include the crypyrinopathies, familial Mediterranean fever, TNF-receptor associated periodic fever syndrome (TRAPS), hyper-IgD and periodic syndrome (HIDS), pyogenic sterile arthritis, pyoderma gangrenosum and acne (PAPA) syndrome, NALP12-HPF, and the Blau syndrome. The diseases are characterized by spontaneous activation of cells of the innate immunity in the absence of ligands. Autoantibodies are usually not found. HPF clinically present with recurrent fever episodes and inflammation, especially of serosal and synovial interfaces and the skin. Intriguingly, PRR-mediated autoinflammtory mechanisms also play a role in a number of chronic inflammatory and autoimmune diseases.

Keywords

Autoinflammation Hereditary periodic fever NALP3 Chronic inflammation Autoimmunity 

Literatur

  1. 1.
    Chae JJ, Wood G, Masters SL et al (2006) The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. Proc Natl Acad Sci U S A 103:9982–9987PubMedCrossRefGoogle Scholar
  2. 2.
    Church LD, McDermott MF (2009) Canakinumab, a fully-human mAb against IL-1beta for the potential treatment of inflammatory disorders. Curr Opin Mol Ther 11:81–89PubMedGoogle Scholar
  3. 3.
    Daysal S, Akcil G, Goker B et al (2005) Infiximab therapy in a patient with familial Mediterranean fever and chronic hip arthritis. Arthritis Rheum 53:146–148PubMedCrossRefGoogle Scholar
  4. 4.
    Delpech M, Grateau G (2001) Genetically determined recurrent fevers. Curr Opin Immunol 13:539–542PubMedCrossRefGoogle Scholar
  5. 5.
    Dinarello CA, Wolff SM, Goldfinger SE et al (1974) Colchicine therapy for familial Mediterranean fever: A double-blind trial. N Engl J Med 291:934–937PubMedCrossRefGoogle Scholar
  6. 6.
    Drenth JPH, van der Meer JWM (2001) Hereditary periodic fever. New Engl J Med 345:1748–1757PubMedCrossRefGoogle Scholar
  7. 7.
    Drewe E, McDermott EM, Powell RJ (2000) Treatment of the nephrotic syndrome with etanercept in patients with the tumor necrosis factor receptor-associated periodic syndrome. N Engl J Med 343:1044–1045PubMedCrossRefGoogle Scholar
  8. 8.
    Goldbach-Mansky R, Dailey N, Canna S et al (2006) Neonatal-onset multisystem inflammatory disease responsive to interleukin-1β inhibition. New Engl J Med 355:581–592PubMedCrossRefGoogle Scholar
  9. 9.
    Halle A, Horung V, Petzold GC et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat Immunol 8:857–865CrossRefGoogle Scholar
  10. 10.
    Hoffman HM, Mueller JL, Broide DH et al (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammtory syndrome and Muckle-Wells syndrome. Nat Genet 29:301–305PubMedCrossRefGoogle Scholar
  11. 11.
    Hoffman HM, Throne ML, Amar NJ et al (2008) Efficacy and safety of rilonacept (interleukin-1 trap) in patients with cryopyrin-associated periodic syndromes: Results from two sequential placebo-controlled studies. Arthritis Rheum 58:2443–2452PubMedCrossRefGoogle Scholar
  12. 12.
    Holle JU, Capraru D, Csernok E et al (2006) Expansion of CD28-CD27-NKG2D+ effector memory T cells and predominant Th1-type response during febrile attacks in tumor necrosis factor-associated periodic syndrome. Isr Med Assoc J 8:142–144PubMedGoogle Scholar
  13. 13.
    Jeru I, Duquesnoy P, Fernandes-Alnemri T et al (2008) Mutations in NALP12 cause hereditary periodic fever syndromes. Proc Natl Acad Sci 105:1614–1619PubMedCrossRefGoogle Scholar
  14. 14.
    Lamprecht P, Timmann C, Ahmadi-Simab K, Gross WL (2004) Hereditäres periodisches Fieber. Internist 45:904–911PubMedCrossRefGoogle Scholar
  15. 15.
    Lamprecht P, Moosig F, Adam-Klages S et al (2004) Small vessel vasculitis and replapsing panniculitis in tumour necrosis factor asscoiated periodic syndrome (TRAPS). Ann Rheum Dis 63:1518–1520PubMedCrossRefGoogle Scholar
  16. 16.
    Lamprecht P, Till A, Kabelitz D (2008) New aspects of the pathogenesis of gout. Danger signals, autoinflammation and beyond. Z Rheumatol 67:151–156PubMedCrossRefGoogle Scholar
  17. 17.
    Livneh A, Langewitz P, Shinar Y et al (1999) MEFV mutation analysis in patients suffering from amyloidosis of familial Mediterranean fever. Amyloid 6:1–6PubMedGoogle Scholar
  18. 18.
    Lobito AA, Kimberley FC, Muppidi JR et al (2006) Abnormal disulfide-linked oligomerization results in ER retention and altered siganling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood 108:1320–1327PubMedCrossRefGoogle Scholar
  19. 19.
    McDermott MF, Aksentijevich I, Galon J et al (1999) Germline mutations in the extra-cellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97:133–144PubMedCrossRefGoogle Scholar
  20. 20.
    Nedjai B, Hitman GA, Yousaf N et al (2008) Abnormal tumor necrosis factor I cell surface expression and NF-kappaB activation in tumor necrosis factor receptor-associated peridoc syndrome. Arthritis Rheum 58:273–283PubMedCrossRefGoogle Scholar
  21. 21.
    Neven B, Prieur AM, Quartier dit Maire P (2008) Cyropyrinopathies: Update on pathogenesis and treatment. Nat Clin Pract Rheumatol 4:481–489PubMedCrossRefGoogle Scholar
  22. 22.
    Petrilli V, Dostert C, Muruve DA, Tschopp J (2007) The inflammasome: A danger sensing complex triggering innate immunity. Curr Opin Immunol 19:615–622PubMedCrossRefGoogle Scholar
  23. 23.
    Ravet N, Rouaghe S, Dode C et al (2006) Clinical significance of P46L and R92Q substitutions in the tumor necrosis factor superfamily 1A gene. Ann Rheum Dis 65:1158–1162PubMedCrossRefGoogle Scholar
  24. 24.
    Rebelo SL, Bainbridge SE, Amel-Kashipaz MR et al (2006) Modeling of tumor necrosis factor superfamily 1A mutants associated with tumor necrosis factor receptor-associated peridoc syndrome indicates misfolding consistent with abnormal function. Arthritis Rheum 54:2674–2687PubMedCrossRefGoogle Scholar
  25. 25.
    Rebelo SL, Amel-Kashipaz MR, Radford PM et al (2009) Noevel markers of inflammation identified in tumor necrosis factor receptor-associated peridoc syndrome (TRAPS) in transcriptomic analysis of effects of TRAPS-associated tumor necrosis factor receptor type I mutants in an endothelial cell line. Arthritis Rheum 60:269–280PubMedCrossRefGoogle Scholar
  26. 26.
    Samuels J, Ozen S (2006) Familial Mediterranean fever and the other autoinflammtory syndromes: Evaluation of the patient with recurrent fever. Curr Opin Rheumatol 18:108–117PubMedCrossRefGoogle Scholar
  27. 27.
    Shinar Y, Livneh A, Langevitz P et al (2000) Genotype-phenotype assessment of common genotypes among patients with familial Mediterranean fever. J Rheumatol 27:1703–1707PubMedGoogle Scholar
  28. 28.
    Shoham NG, Centola M, Mansfield E et al (2003) Pyrin binds the PSTPIP1 / CD“BP1 protein, defining familial Mediterranean fever and PAPA sindrome as disorders in the same pathway. Proc Natl Acad Sci U S A 100:13501–13506PubMedCrossRefGoogle Scholar
  29. 29.
    The International FMF Consortium (1997) Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90:797–807CrossRefGoogle Scholar
  30. 30.
    Tunca M, Akar S, Soyturk M et al (2004) The effect of interferon alpha administration on acute attacks of familial Mediterranean fever: A double-blind, placebo controlled trial. Clin Exp Rheumatol 22(4 Suppl 34):S37–S40PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.Poliklinik für Rheumatologie, Vaskulitiszentrum UKSH & Klinikum Bad BramstedtUniversität zu LübeckLübeckDeutschland

Personalised recommendations