Advertisement

Der Internist

, Volume 50, Issue 4, pp 397–409 | Cite as

Hypertensive Folgeschäden am Herzen

  • M. Steinmetz
  • G. Nickenig
Schwerpunkt: Hypertonie

Zusammenfassung

Die arterielle Hypertonie führt zu Umstrukturierung und Schädigung des Herzens. Diese „Hypertensive Herzkrankheit“ umfasst die linksventrikuläre Hypertrophie. Ihr werden zudem diastolische und systolische Dysfunktion, die vaskulären Manifestationen der Mikroangiopathie und im weiteren Sinn auch koronare Herzkrankheit, sowie Herzrhythmusstörungen und plötzlicher Herztod zugeschrieben. Die pathophysiologischen Mechanismen beruhen auf einer komplexen neurohumoralen Regulation und der daraus entstehenden Änderung der Struktur und Leistung des Herzens. Der initialen Kompensation des vermehrten kardialen Leistungsbedarfs folgt die dauerhafte Schädigung des Herzens und sukzessive Dekompensation. Erst hier werden typische Beschwerden von Herzinsuffizienz oder -ischämie evident. Eine Diagnosestellung ist besonders zu Beginn wichtig, da sich die Prognose hinsichtlich Morbidität und Mortalität mit Fortbestehen des Hypertonus und Entwicklung einer dauerhaften Schädigung des Herzens verschlechtert.

Schlüsselwörter

Arterielle Hypertonie Hypertensive Herzkrankheit Linksventrikuläre Hypertrophie Diastolische Dysfunktion Mikroangiopathie 

Abkürzungen

ACC/AHA

American College of Cardiology/American Heart Association

ACE

Angiotensin Converting Enzyme

AngII

Angiotensin II

ANP

Atrial Natriuretic Peptide

AR

Adrenorezeptoren

BNP

Brain Natriuretic Peptide

CNP

C-type Natriuretic Peptide

EKG

Elektrokardiogramm

ET

Endothelin

ICD

Implantierbarer Kardioverter/Defibrillator

IGF

Insulin-like Growth Factor

IVUS

Intravaskulärer Ultraschall

KHK

Koronare Herzkrankheit

LVEDP

Left Ventricular End-diastolic Pressure

LVH

Linksventrikuläre Hypertrophie

MAPK

Mitogen Activated Protein Kinase

MCP-1

Monocyte Chemoattractant Protein 1

NO

Stickstoffmonoxid

NPRA

Natriuretic Peptide Receptor A

NYHA

New York Heart Association

PCWP

Pulmonary Capillary Wedge Pressure

RA(A)S

Renin-Angiotensin-(Aldosteron-)System

ROS

Reactive Oxygen Species

RWT

Relative Wall Thickness

TGF-β

Transforming Growth Factor β

TNF-α

Tumornekrosefaktor α

Cardiac sequelae of hypertension

Abstract

Arterial hypertension leads to cardiac restructuring and damage. This“hypertensive heart disease” includes left ventricular hypertrophy. In addition, it is also considered responsible for diastolic and systolic dysfunction, vascular manifestations of microangiopathy and in a broader sense also coronary heart disease as well as cardiac dysrhythmias and sudden cardiac death. The pathophysiological mechanisms depend on a complex neurohumoral regulation and the ensuing change in cardiac structure and output. The initial compensation for increased cardiac demand is followed by permanent heart damage and successive decompensation. At this point the typical complaints involved in cardiac insufficiency or ischemia become evident. Determining the diagnosis is particularly important early on since the prognosis with regard to morbidity and mortality deteriorates if the hypertensive condition persists and the heart develops lasting damage.

Keywords

Arterial hypertension Hypertensive heart disease Left ventricular hypertrophy Diastolic dysfunction Microangiopathy 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Abassi Z, Karram T, Ellaham S et al. (2004) Implications of the natriuretic peptide system in the pathogenesis of heart failure: diagnostic and therapeutic importance. Pharmacol Ther 102: 223–241PubMedCrossRefGoogle Scholar
  2. 2.
    Abraham WT, Hensen J, Schrier RW (1990) Elevated plasma noradrenaline concentrations in patients with low-output cardiac failure: dependence on increased noradrenaline secretion rates. Clin Sci (Lond) 79: 429–435Google Scholar
  3. 3.
    Akiyama-Uchida Y, Ashizawa N, Ohtsuru A et al. (2002) Norepinephrine enhances fibrosis mediated by TGF-beta in cardiac fibroblasts. Hypertension 40: 148–154PubMedCrossRefGoogle Scholar
  4. 4.
    Aurigemma GP, Gaasch WH (2004) Clinical practice. Diastolic heart failure. N Engl J Med 351: 1097–1105PubMedCrossRefGoogle Scholar
  5. 5.
    Baker CS, Dutka DP, Pagano D et al. (2002) Immunocytochemical evidence for inducible nitric oxide synthase and cyclooxygenase-2 expression with nitrotyrosine formation in human hibernating myocardium. Basic Res Cardiol 97: 409–415PubMedCrossRefGoogle Scholar
  6. 6.
    Barton M, Yanagisawa M (2008) Endothelin: 20 years from discovery to therapy. Can J Physiol Pharmacol 86: 485–498PubMedCrossRefGoogle Scholar
  7. 7.
    Bers Dm, Despa S, Bossuyt J (2006) Regulation of Ca2+ and Na+ in normal and failing cardiac myocytes. Ann N Y Acad Sci 1080: 165–177PubMedCrossRefGoogle Scholar
  8. 8.
    Bikkina M, Larson MG, Levy D (1993) Asymptomatic ventricular arrhythmias and mortality risk in subjects with left ventricular hypertrophy. J Am Coll Cardiol 22: 1111–1116PubMedGoogle Scholar
  9. 9.
    Boldt A, Wetzel U, Weigl J et al. (2003) Expression of angiotensin II receptors in human left and right atrial tissue in atrial fibrillation with and without underlying mitral valve disease. J Am Coll Cardiol 42: 1785–1792PubMedCrossRefGoogle Scholar
  10. 10.
    Brilla CG, Weber KT (1992) Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J Lab Clin Med 120: 893–901PubMedGoogle Scholar
  11. 11.
    Bristow MR (1998) Why does the myocardium fail? Insights from basic science. Lancet 352 (Suppl 1): SI8–S14PubMedCrossRefGoogle Scholar
  12. 12.
    Bristow MR, Ginsburg R, Minobe W et al. (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307: 205–211PubMedGoogle Scholar
  13. 13.
    Brunner-La Rocca HP, Kaye DM, Woods RL et al. (2001) Effects of intravenous brain natriuretic peptide on regional sympathetic activity in patients with chronic heart failure as compared with healthy control subjects. J Am Coll Cardiol 37: 1221–1227CrossRefGoogle Scholar
  14. 14.
    Brush JE, Cannon RO, Schenke WH et al. (1988) Angina due to coronary microvascular disease in hypertensive patients without left ventricular hypertrophy. N Engl J Med 319: 1302–1307PubMedGoogle Scholar
  15. 15.
    Casale PN, Devereux RB, Milner M et al. (1986) Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Ann Intern Med 105: 173–178PubMedGoogle Scholar
  16. 16.
    Casiglia E, Schiavon L, Tikhonoff V et al. (2008) Electrocardiographic criteria of left ventricular hypertrophy in general population. Eur J Epidemiol 23: 261–271PubMedCrossRefGoogle Scholar
  17. 17.
    Cecil MP, Pilcher WC, Eisner RL et al. (1994) Absence of defects in SPECT thallium-201 myocardial images in patients with systemic hypertension and left ventricular hypertrophy. Am J Cardiol 74: 43–46PubMedCrossRefGoogle Scholar
  18. 18.
    Choi DJ, Koch WI, Hunter JI et al. (1997) Mechanism of beta-adrenergic receptor desensitization in cardiac hypertrophy is increased beta-adrenergic receptor kinase. J Biol Chem 272: 17223–17229PubMedCrossRefGoogle Scholar
  19. 19.
    Collins R, Armitage J, Parish S et al. (2003) MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 361: 2005–2016PubMedCrossRefGoogle Scholar
  20. 20.
    Colucci WS, Packer M, Bristow MR et al. (1996) Carvedilol inhibits clinical progression in patients with mild symptoms of heart failure. US Carvedilol Heart Failure Study Group. Circulation 94: 2800–2806PubMedGoogle Scholar
  21. 21.
    Davis D, Baily R, Zelis R (1988) Abnormalities in systemic norepinephrine kinetics in human congestive heart failure. Am J Physiol 254: E760–E766PubMedGoogle Scholar
  22. 22.
    Devereux RB, Lutas EM, Casale PN et al. (1984) Standardization of M-mode echocardiographic left ventricular anatomic measurements. J Am Coll Cardiol 4: 1222–1230PubMedGoogle Scholar
  23. 23.
    Devereux RB, Reichek N (1977) Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 55: 613–618PubMedGoogle Scholar
  24. 24.
    Drazner MH, Rame JE, Marino EK et al. (2004) Increased left ventricular mass is a risk factor for the development of a depressed left ventricular ejection fraction within five years: the Cardiovascular Health Study. J Am Coll Cardiol 43: 2207–2215PubMedCrossRefGoogle Scholar
  25. 25.
    Fearon WF, Lee DP, Froelicher VF (2000) The effect of resting ST segment depression on the diagnostic characteristics of the exercise treadmill test. J Am Coll Cardiol 35: 1206–1211PubMedCrossRefGoogle Scholar
  26. 26.
    Forette F, Seux ML, Staessen JA et al. (1998) Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet 352: 1347–1351PubMedCrossRefGoogle Scholar
  27. 27.
    Francis GS, Mcdonald KM (1992) Left ventricular hypertrophy: an initial response to myocardial injury. Am J Cardiol 69: 3G–7GPubMedCrossRefGoogle Scholar
  28. 28.
    Fu YC, Chi CS, Yin SC et al. (2004) Norepinephrine induces apoptosis in neonatal rat cardiomyocytes through a reactive oxygen species-TNF alpha-caspase signaling pathway. Cardiovasc Res 62: 558–567PubMedCrossRefGoogle Scholar
  29. 29.
    Gianrossi R, Detrano R, Mulvihill D et al. (1989) Exercise-induced ST depression in the diagnosis of coronary artery disease. A meta-analysis. Circulation 80: 87–98PubMedGoogle Scholar
  30. 30.
    Gibson CM, Cannon CP, Daley WL et al. (1996) TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation 93: 879–888PubMedGoogle Scholar
  31. 31.
    Goette A, Arndt M, Rocken C et al. (2000) Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation 101: 2678–2681PubMedGoogle Scholar
  32. 32.
    Goette A, Staack T, Rocken C et al. (2000) Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J Am Coll Cardiol 35: 1669–1677PubMedCrossRefGoogle Scholar
  33. 33.
    Goldstein RA, Haynie M (1990) Limited myocardial perfusion reserve in patients with left ventricular hypertrophy. J Nucl Med 31: 255–258PubMedGoogle Scholar
  34. 34.
    Gottdiener JS, Mcclelland RL, Marshall R et al. (2002) Outcome of congestive heart failure in elderly persons: influence of left ventricular systolic function. The Cardiovascular Health Study. Ann Intern Med 137: 631–639PubMedGoogle Scholar
  35. 35.
    Graham I, Atar D, Borch-Johnsen K et al. (2007) European guidelines on cardiovascular disease prevention in clinical practice: full text. Fourth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Eur J Cardiovasc Prev Rehabil 14 (Suppl 2): S1–S113PubMedCrossRefGoogle Scholar
  36. 36.
    Granger BB, Swedberg K, Ekman I et al. (2005) Adherence to candesartan and placebo and outcomes in chronic heart failure in the CHARM programme: double-blind, randomised, controlled clinical trial. Lancet 366: 2005–2011PubMedCrossRefGoogle Scholar
  37. 37.
    Gustafsson AB, Gottlieb RA (2008) Heart mitochondria: gates of life and death. Cardiovasc Res 77: 334–343PubMedCrossRefGoogle Scholar
  38. 38.
    Hasegawa K, Iwai-Kanai E, Sasayama S (2001) Neurohormonal regulation of myocardial cell apoptosis during the development of heart failure. J Cell Physiol 186: 11–18PubMedCrossRefGoogle Scholar
  39. 39.
    Hasking GJ, Esler MD, Jennings GL et al. (1986) Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73: 615–621PubMedGoogle Scholar
  40. 40.
    Hennekens CH, Dyken ML, Fuster V (1997) Aspirin as a therapeutic agent in cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 96: 2751–2753PubMedGoogle Scholar
  41. 41.
    Hjalmarson A, Goldstein S, Fagerberg B et al. (2000) Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). MERIT-HF Study Group. JAMA 283: 1295–1302PubMedCrossRefGoogle Scholar
  42. 42.
    Hoffman JI (1984) Maximal coronary flow and the concept of coronary vascular reserve. Circulation 70: 153–159PubMedGoogle Scholar
  43. 43.
    Jackson R, Lawes CM, Bennett DA et al. (2005) Treatment with drugs to lower blood pressure and blood cholesterol based on an individual’s absolute cardiovascular risk. Lancet 365: 434–441PubMedGoogle Scholar
  44. 44.
    Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348: 2007–2018PubMedCrossRefGoogle Scholar
  45. 45.
    Kai H, Kuwahara F, Tokuda K et al. (2005) Diastolic dysfunction in hypertensive hearts: roles of perivascular inflammation and reactive myocardial fibrosis. Hypertens Res 28: 483–490PubMedCrossRefGoogle Scholar
  46. 46.
    Kannel WB, Dannenberg AL, Levy D (1987) Population implications of electrocardiographic left ventricular hypertrophy. Am J Cardiol 60: 85I–93IPubMedCrossRefGoogle Scholar
  47. 47.
    Kannel WB, Wolf PA, Benjamin EJ et al. (1998) Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol 82: 2N–9NPubMedCrossRefGoogle Scholar
  48. 48.
    Kaplan NM, Opie LH (2006) Controversies in hypertension. Lancet 367: 168–176PubMedCrossRefGoogle Scholar
  49. 49.
    Katz AM (1990) Interplay between inotropic and lusitropic effects of cyclic adenosine monophosphate on the myocardial cell. Circulation 82: I7–11PubMedGoogle Scholar
  50. 50.
    Kearney PM, Whelton M, Reynolds K et al. (2004) Worldwide prevalence of hypertension: a systematic review. J Hypertens 22: 11–19PubMedCrossRefGoogle Scholar
  51. 51.
    Kelm M (2001) Interaction of the coronary macro- and microcirculation. Z Kardiol 90: 946–952PubMedCrossRefGoogle Scholar
  52. 52.
    Kimura E, Tabata T, Tanaka H et al. (2005) Left ventricular geometry and myocardial contractility in patients with essential hypertension evaluated by myocardial velocity profile. J Am Soc Echocardiogr 18: 1222–1229PubMedCrossRefGoogle Scholar
  53. 53.
    Klingbeil AU, Schneider M, Martus P et al. (2003) A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med 115: 41–46PubMedCrossRefGoogle Scholar
  54. 54.
    Kobayashi N, Mori Y, Nakano S et al. (2001) TCV-116 stimulates eNOS and caveolin-1 expression and improves coronary microvascular remodeling in normotensive and angiotensin II-induced hypertensive rats. Atherosclerosis 158: 359–368PubMedCrossRefGoogle Scholar
  55. 55.
    Kober L, Torp-Pedersen C, Carlsen JE et al. (1995) A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. N Engl J Med 333: 1670–1676PubMedCrossRefGoogle Scholar
  56. 56.
    Krum H, Carson P, Farsang C et al. (2004) Effect of valsartan added to background ACE inhibitor therapy in patients with heart failure: results from Val-HeFT. Eur J Heart Fail 6: 937–945PubMedCrossRefGoogle Scholar
  57. 57.
    Kumar R, Singh VP, Baker KM (2008) The intracellular renin-angiotensin system: implications in cardiovascular remodeling. Curr Opin Nephrol Hypertens 17: 168–173PubMedCrossRefGoogle Scholar
  58. 58.
    Lamba S, Abraham WT (2000) Alterations in adrenergic receptor signaling in heart failure. Heart Fail Rev 5: 7–16PubMedCrossRefGoogle Scholar
  59. 59.
    Landmesser U, Drexler H (2007) Endothelial function and hypertension. Curr Opin Cardiol 22: 316–320PubMedCrossRefGoogle Scholar
  60. 60.
    Laurent GJ (1987) Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol 252: C1–C9PubMedGoogle Scholar
  61. 61.
    Law MR, Wald NJ (2002) Risk factor thresholds: their existence under scrutiny. BMJ 324: 1570–1576PubMedCrossRefGoogle Scholar
  62. 62.
    Levine TB, Francis GS, Goldsmith SR et al. (1982) Activity of the sympathetic nervous system and renin-angiotensin system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive heart failure. Am J Cardiol 49: 1659–1666PubMedCrossRefGoogle Scholar
  63. 63.
    Levy D, Anderson KM, Savage DD et al. (1987) Risk of ventricular arrhythmias in left ventricular hypertrophy: the Framingham Heart Study. Am J Cardiol 60: 560–565PubMedCrossRefGoogle Scholar
  64. 64.
    Levy D, Anderson KM, Savage DD et al. (1988) Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors. The Framingham Heart Study. Ann Intern Med 108: 7–13PubMedGoogle Scholar
  65. 65.
    Levy D, Garrison RJ, Savage DD et al. (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322: 1561–1566PubMedGoogle Scholar
  66. 66.
    Levy D, Kenchaiah S, Larson MG et al. (2002) Long-term trends in the incidence of and survival with heart failure. N Engl J Med 347: 1397–1402PubMedCrossRefGoogle Scholar
  67. 67.
    Lin M, Sumimoto T, Hiwada K (1995) Left ventricular geometry and cardiac function in mild to moderate essential hypertension. Hypertens Res 18: 151–157PubMedCrossRefGoogle Scholar
  68. 68.
    Lip GY, Felmeden DC, Li-Saw-Hee FL et al. (2000) Hypertensive heart disease. A complex syndrome or a hypertensive ‚cardiomyopathy’? Eur Heart J 21: 1653–1665PubMedCrossRefGoogle Scholar
  69. 69.
    Lombes M, Oblin ME, Gasc JM et al. (1992) Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor. Circ Res 71: 503–510PubMedGoogle Scholar
  70. 70.
    Lopez Salazar B, Ravassa Albeniz S, Arias Guedon T et al. (2006) Altered fibrillar collagen metabolism in hypertensive heart failure. Current understanding and future prospects. Rev Esp Cardiol 59: 1047–1057CrossRefGoogle Scholar
  71. 71.
    Massie BM, Carson PE, Mcmurray JJ et al. (2008) Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med 359: 2456–2467PubMedCrossRefGoogle Scholar
  72. 72.
    Mclenachan JM, Henderson E, Morris KI et al. (1987) Ventricular arrhythmias in patients with hypertensive left ventricular hypertrophy. N Engl J Med 317: 787–792PubMedGoogle Scholar
  73. 73.
    Messerli FH, Ventura HO, Elizardi DJ et al. (1984) Hypertension and sudden death. Increased ventricular ectopic activity in left ventricular hypertrophy. Am J Med 77: 18–22PubMedCrossRefGoogle Scholar
  74. 74.
    Miller JM, Rochitte CE, Dewey M et al. (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359: 2324–2336PubMedCrossRefGoogle Scholar
  75. 75.
    Miura K, Daviglus ML, Dyer AR et al. (2001) Relationship of blood pressure to 25-year mortality due to coronary heart disease, cardiovascular diseases and all causes in young adult men: the Chicago heart association detection project in industry. Arch Intern Med 161: 1501–1508PubMedCrossRefGoogle Scholar
  76. 76.
    Moncrieff J, Lindsay MM, Dunn FG (2004) Hypertensive heart disease and fibrosis. Curr Opin Cardiol 19: 326–331PubMedCrossRefGoogle Scholar
  77. 77.
    Murphy ML, Thenabadu PN, De Soyza N et al. (1985) Sensitivity of electrocardiographic criteria for left ventricular hypertrophy according to type of cardiac disease. Am J Cardiol 55: 545–549PubMedCrossRefGoogle Scholar
  78. 78.
    Naga Prasad SV, Barak LS, Rapacciuolo A et al. (2001) Agonist-dependent recruitment of phosphoinositide 3-kinase to the membrane by beta-adrenergic receptor kinase 1. A role in receptor sequestration. J Biol Chem 276: 18953–18959CrossRefGoogle Scholar
  79. 79.
    Naga Prasad SV, Laporte SA, Chamberlain D et al. (2002) Phosphoinositide 3-kinase regulates beta2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor/beta-arrestin complex. J Cell Biol 158: 563–575CrossRefGoogle Scholar
  80. 80.
    Olivetti G, Melissari M, Balbi T et al. (1994) Myocyte nuclear and possible cellular hyperplasia contribute to ventricular remodeling in the hypertrophic senescent heart in humans. J Am Coll Cardiol 24: 140–149PubMedCrossRefGoogle Scholar
  81. 81.
    Owan TE, Hodge DO, Herges RM et al. (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355: 251–259PubMedCrossRefGoogle Scholar
  82. 82.
    Pardo Mindan FJ, Panizo A (1993) Alterations in the extracellular matrix of the myocardium in essential hypertension. Eur Heart J 14(Suppl J): 12–14Google Scholar
  83. 83.
    Paulus WJ, Tschope C, Sanderson JE et al. (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 28: 2539–2550PubMedCrossRefGoogle Scholar
  84. 84.
    Pfeffer MA, Braunwald E, Moye LA et al. (1992) Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med 327: 669–677PubMedGoogle Scholar
  85. 85.
    Poole-Wilson PA, Swedberg K, Cleland JG et al. (2003) Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 362: 7–13PubMedCrossRefGoogle Scholar
  86. 86.
    Pringle SD, Dunn FG, Lorimer AR et al. (1994) The role of nuclear cardiology in hypertension. Nucl Med Commun 15: 4–8PubMedCrossRefGoogle Scholar
  87. 87.
    Querejeta R, Varo N, Lopez B et al. (2000) Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation 101: 1729–1735PubMedGoogle Scholar
  88. 88.
    Redfield MM, Jacobsen SJ, Burnett JC Jr et al. (2003) Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 289: 194–202PubMedCrossRefGoogle Scholar
  89. 89.
    Remondino A, Kwon SH, Communal C et al. (2003) Beta-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Circ Res 92: 136–138PubMedCrossRefGoogle Scholar
  90. 90.
    Rocha R, Martin-Berger CL, Yang P et al. (2002) Selective aldosterone blockade prevents angiotensin II/salt-induced vascular inflammation in the rat heart. Endocrinology 143: 4828–4836PubMedCrossRefGoogle Scholar
  91. 91.
    Rubattu S, Sciarretta S, Valenti V et al. (2008) Natriuretic peptides: an update on bioactivity, potential therapeutic use, and implication in cardiovascular diseases. Am J Hypertens 21: 733–741PubMedCrossRefGoogle Scholar
  92. 92.
    Schafer A, Fraccarollo D, Tas P et al. (2004) Endothelial dysfunction in congestive heart failure: ACE inhibition vs. angiotensin II antagonism. Eur J Heart Fail 6: 151–159PubMedCrossRefGoogle Scholar
  93. 93.
    Schirpenbach C, Reincke M (2008) Epidemiology and etiology of therapy-resistant hypertension. Internist (Berl)Google Scholar
  94. 94.
    Serneri GG, Boddi M, Cecioni I et al. (2001) Cardiac angiotensin II formation in the clinical course of heart failure and its relationship with left ventricular function. Circ Res 88: 961–968PubMedCrossRefGoogle Scholar
  95. 95.
    Shigematsu Y, Hamada M, Ohtsuka T et al. (1998) Left ventricular geometry as an independent predictor for extracardiac target organ damage in essential hypertension. Am J Hypertens 11: 1171–1177PubMedCrossRefGoogle Scholar
  96. 96.
    Singh K, Xiao L, Remondino A et al. (2001) Adrenergic regulation of cardiac myocyte apoptosis. J Cell Physiol 189: 257–265PubMedCrossRefGoogle Scholar
  97. 97.
    Teerlink JR (2002) Reversal of left ventricular remodeling: role of the endothelin pathway. J Card Fail 8: S494–S499PubMedCrossRefGoogle Scholar
  98. 98.
    Thomas JA, Marks BH (1978) Plasma norepinephrine in congestive heart failure. Am J Cardiol 41: 233–243PubMedCrossRefGoogle Scholar
  99. 99.
    Turner NA, Xia F, Azhar G et al. (1998) Oxidative stress induces DNA fragmentation and caspase activation via the c-Jun NH2-terminal kinase pathway in H9c2 cardiac muscle cells. J Mol Cell Cardiol 30: 1789–1801PubMedCrossRefGoogle Scholar
  100. 100.
    Valgimigli M, Merli E, Malagutti P et al. (2004) Hydroxyl radical generation, levels of tumor necrosis factor-alpha and progression to heart failure after acute myocardial infarction. J Am Coll Cardiol 43: 2000–2008PubMedCrossRefGoogle Scholar
  101. 101.
    Vasan RS, Larson MG, Benjamin EJ et al. (1999) Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction: prevalence and mortality in a population-based cohort. J Am Coll Cardiol 33: 1948–1955PubMedCrossRefGoogle Scholar
  102. 102.
    Verdecchia P, Angeli F, Achilli P et al. (2007) Echocardiographic left ventricular hypertrophy in hypertension: marker for future events or mediator of events? Curr Opin Cardiol 22: 329–334PubMedCrossRefGoogle Scholar
  103. 103.
    Von Harsdorf R, Li PF, Dietz R (1999) Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99: 2934–2941Google Scholar
  104. 104.
    Walsh RA (1990) Sympathetic control of diastolic function in congestive heart failure. Circulation 82: I52–158PubMedGoogle Scholar
  105. 105.
    Wang Y, Huang S, Sah VP et al. (1998) Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 273: 2161–2168PubMedCrossRefGoogle Scholar
  106. 106.
    Willenheimer R, Van Veldhuisen DJ, Silke B et al. (2005) Effect on survival and hospitalization of initiating treatment for chronic heart failure with bisoprolol followed by enalapril, as compared with the opposite sequence: results of the randomized Cardiac Insufficiency Bisoprolol Study (CIBIS) III. Circulation 112: 2426–2435PubMedCrossRefGoogle Scholar
  107. 107.
    Yano M, Kim S, Izumi Y et al. (1998) Differential activation of cardiac c-jun amino-terminal kinase and extracellular signal-regulated kinase in angiotensin II-mediated hypertension. Circ Res 83: 752–760PubMedGoogle Scholar
  108. 108.
    Yusuf S, Hawken S, Ounpuu S et al. (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364: 937–952PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.Med. Klinik und Poliklinik II/Kardiologie, Pneumologie und AngiologieUniversitätsklinikum Bonn,BonnDeutschland

Personalised recommendations