Der Internist

, Volume 50, Issue 7, pp 810–816 | Cite as

Diagnose und kausale Therapie der Sepsis

Schwerpunkt: Sepsis

Zusammenfassung

Trotz einer Vielzahl verbesserter supportiver und adjunktiver Therapiemaßnahmen hat sich an der hohen Letalität und Morbidität der schweren Sepsis und des septischen Schocks innerhalb der letzten 20 Jahre wenig geändert. Grund hierfür sind v. a. Defizite in der frühzeitigen Diagnose, der – wann immer möglichen – chirurgischen Herdsanierung und/oder der antibiotischen Therapie des Infektionsfokus. Einer weltweit steigenden Resistenzentwicklung der wichtigsten Infektionserreger gegenüber allen gängigen Antibiotika einerseits steht andererseits keine vergleichbare Entwicklung neuer antiinfektiver Substanzen gegenüber. Vor allem im Bereich gramnegativer Probleminfektionen mit Non-Fermentern wie Pseudomonas aeruginosa sind auf absehbare Zeit keine neuen Substanzen zu erwarten. Schwerpunkt der gegenwärtigen klinischen Versorgung und Forschung müssen daher präventive Maßnahmen und die Optimierung der antibiotischen Strategien darstellen. Von besonderer Bedeutung ist hierbei eine breite, hochdosierte, frühzeitig applizierte Initialtherapie, eine klinisch und an molekularen Markern orientierte Deeskalationsstrategie und eine – mit Ausnahmen – auf 7–10 Tagen begrenzte Therapiedauer. Einer engen Zusammenarbeit von Mikrobiologie, Hygiene und klinischer Infektiologie kommt in Anbetracht der dramatischen infektiologischen Probleme der Zukunft eine entscheidende Bedeutung zu.

Schlüsselwörter

Sepsis Septischer Schock Diagnostik Antibiotikatherapie Antibiotikaresistenz 

Diagnosis and causal treatment of sepsis

Abstract

The high mortality and morbidity of severe sepsis and septic shock had not been reduced during the two recent decades, despite a number of advances in the field of supportive and adjunctive sepsis therapies. The reason might be that important steps towards overcoming of sepsis are progress in the early diagnosis, the surgical resection of the infectious focus and an adequate antibiotic treatment. However, worldwide growing resistances of pathogens against the common antibiotics are detected. In opposite, no major progress in the development of new antibiotics, mainly for the treatment of Gram-negative non-fermenter infections like Pseudomonas aeruginosa, can be predicted for the next years. Therefore, sepsis treatment must be focused on prevention of infection, and on an optimised application of current antibiotic substances. The key factors are a broad, high dose, and early applicated initial treatment, a de-escalation strategy according to the clinical course supported by the application of novel molecular markers, and – with exceptions – a limitation of treatment to 7 to 10 days. A closer cooperation between microbiologists, infection control specialists and clinical infectious disease consultants may be a key factor to overcome the raising problems in the future.

Keywords

Sepsis Septic shock Diagnostics Antibiotic therapy Antibiotic resistance 

Notes

Danksagung

Mit Unterstützung des Kompetenznetzwerkes Sepsis (SepNet), gefördert vom Bundesministerium für Bildung und Forschung (BMBF), Förderkennzeichen: 01 KI 0106.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Baddour LM, Yu VL, Klugman KP et al. (2004) Combination antibiotic therapy lowers mortality among severely ill patients with pneumococcal bacteremia. Am J Respir Crit Care Med 170: 440–444PubMedCrossRefGoogle Scholar
  2. 2.
    Barie P, Williams M, McCollam J et al. (2004) Benefit/risk profile of drotrecogin alfa (activated) in surgical patients with severe sepsis. Am J Surg 188: 212–222PubMedCrossRefGoogle Scholar
  3. 3.
    Centers for Disease Control and Prevention http://www.cdc.gov/ncidod/hip/NNIS/members/2001NNIS_report.pdfGoogle Scholar
  4. 4.
    Chastre J, Wolff M, Fagon JY et al. (2003) Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: A randomized trial. JAMA 290: 2588–2598PubMedCrossRefGoogle Scholar
  5. 5.
    Christ-Crain M, Jaccard-Stolz D, Bingisser R et al. (2004) Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: Cluster-randomised, single-blinded intervention trial. Lancet 363: 600–607PubMedCrossRefGoogle Scholar
  6. 6.
    ClinicalTrials.gov (2009) Comparison of two antibiotic regimen (meropenem versus meropenem+moxifloxacin) in the treatment of severe sepsis and septic shock (MaxSep). http://clinicaltrials.gov/ct2/show/study/NCT00534287?view=resultsGoogle Scholar
  7. 7.
    Engel C, Brunkhorst FM, Bone HG et al. (2007) Epidemiology of sepsis in Germany: Results from a national prospective multicenter study. Intensive Care Med 33: 606–618PubMedCrossRefGoogle Scholar
  8. 8.
    European Antimicrobial Resistance Surveillance System (2008) EARSS Annual Report 2007. http://www.rivm.nl/earss/Images/EARSS%202007_FINAL_tcm61-55933.pdfGoogle Scholar
  9. 9.
    Harbarth S, Holeckova K, Froidevaux C et al. (2001) Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med 164: 396–402PubMedGoogle Scholar
  10. 10.
    Heyland D, Dodek P, Muscedere J, Day A; Canadian Critical Care Trials Group (2006) A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med 355: 2619–2630CrossRefGoogle Scholar
  11. 11.
    Kujath P, Eckmann C, Esnaashari H, Bruch HP (2007) The value of different lavage treatment patterns in diffuse peritonitis. Zentralbl Chir 132: 427–432PubMedCrossRefGoogle Scholar
  12. 12.
    Kumar A, Roberts D, Wood KE (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34: 1589–1596PubMedCrossRefGoogle Scholar
  13. 13.
    Levy MM, Fink MP, Marshall JC et al. for the International Sepsis Definitions Conference (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 29: 530–538PubMedGoogle Scholar
  14. 14.
    Mandell LA, Bartlett JG, Dowell SF et al. (2003) Update of practice guidelines for the management of community-acquired pneumonia in immunocompetent adults. Clin Infect Dis 37(11): 1405–1433PubMedCrossRefGoogle Scholar
  15. 15.
    Meisner M (2000) Procalcitonin. A new, innovative infection parameter, 3rd ed. Thieme, StuttgartGoogle Scholar
  16. 16.
    Micek ST, Lloyd AE, Ritchie DJ et al. (2005) Pseudomonas aeruginosa bloodstream infection: Importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother 49: 1306–1311PubMedCrossRefGoogle Scholar
  17. 17.
    Nobre V, Harbarth S, Graf JD et al. (2008) Use of procalcitonin to shorten antibiotic treatment duration in septic patients: A randomized trial. Am J Respir Crit Care Med 177: 498–505PubMedCrossRefGoogle Scholar
  18. 18.
    Paul M, Benuri-Silbiger I, Soares-Weiser K, Leibovici L (2004) Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: Systematic review and meta-analysis of randomised trials. BMJ 328: 668PubMedCrossRefGoogle Scholar
  19. 19.
    Rangel-Frausto MS, Pittet D, Costigan M et al. (1995) The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA 273: 117–123PubMedCrossRefGoogle Scholar
  20. 20.
    Reimer LG, Wilson ML, Weinstein MP (1997) Update on detection of bacteremia and fungemia. Clin Microbiol Rev 10: 444–465PubMedGoogle Scholar
  21. 21.
    Reinhart K, Brunkhorst FM, Bone HG et al. (2006) Diagnose und Therapie der Sepsis: S2-Leitlinien der Deutschen Sepsisgesellschaft e.V. (DSG) und der Deutschen Interdisziplinären Vereinigung für Intensiv- und Notfallmedizin (DIVI). Internist (Berl) 47: 356–373Google Scholar
  22. 22.
    Safdar N, Handelsman J, Maki DG (2004) Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis 4: 519–527PubMedCrossRefGoogle Scholar
  23. 23.
    Schrenzel J (2007) Clinical relevance of new diagnostic methods for bloodstream infections. Int J Antimicrob Agents (Suppl 1): S2–S6CrossRefGoogle Scholar
  24. 24.
    Trouillet JL, Chastre J, Vuagnat A et al. (1998) Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. Am J Respir Crit Care Med 157: 531–539PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.Paul-Martini-Forschergruppe für klinische Sepsisforschung, Klinik für Anästhesiologie und IntensivtherapieKlinikum der Friedrich-Schiller-Universität JenaJenaDeutschland

Personalised recommendations