Der Internist

, 50:36 | Cite as

Glukokortikoide und Hypertonie

Schwerpunkt: Therapierefraktäre und sekundäre arterielle Hypertonie

Zusammenfassung

80% der Patienten mit einem Morbus Cushing entwickeln eine schwere arterielle Hypertonie. Zusätzlich führt ein chronischer Hyperkortisolismus zu einem metabolischen Syndrom mit Insulinresistenz, Übergewicht, Glukoseintoleranz und Fettstoffwechselstörungen, die ebenfalls zu dem Bluthochdruck beitragen bzw. seine Folgen aggravieren. Diese Effekte entwickeln sich in Abhängigkeit von der Glukokortikoidwirkung auf intrazelluläre Glukokortikoid- und Mineralokortikoidrezeptoren und werden durch die lokale Aktivität der Hydroxysteroiddehydrogenasen modifiziert. Durch die ubiquitäre, sehr spezifische Verteilung der Steroidrezeptoren in verschiedenen Organsystemen führt der Überschuss der Glukokortikoide zu sehr komplexen Veränderungen, die bei endogenem oder exogen induziertem Glukokortikoidüberschuss bedacht werden müssen. Im Mittelpunkt dieses Artikels stehen die Veränderungen der blutdruckregulierenden Systeme, die durch Glukokortikoide hervorgerufen werden und zur Entwicklung der arteriellen Hypertonie beitragen.

Schlüsselwörter

Glukokortikoide Mineralokortikoide Hypertonie Sekundäre Hypertonie Blutdruck 

Glucocorticoids and hypertension

Abstract

Severe arterial hypertension is a hallmark of Cushing syndrome which occurs in 80% of the patients. Additionally, persistent cortisol excess induces obesity, hyperinsulinemia with disturbed glucose tolerance and dyslipidemia which all contribute to the development of hypertension and its deleterious sequelae. Cortisol effects are mediated through diversely distributed intracellular glucocorticoid and mineralocorticoid receptors which are protected by the 11-β-hydroxysteroiddehydrogenase type 2 in cells of some organs (i.e. kidney) but not in other. A highly complex clinical picture evolves in case of hypercortisolism due to the ubiquitous distribution of steroid receptors with different affinity and binding capacities for glucocorticoids. The present review focuses on the cortisol induced changes in blood pressure regulation which contribute to the development of hypertension.

Keywords

Glucocorticoid Mineralcorticoid Hypertension Secondary hypertension Blood pressure 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Best R, Nelson SM, Walker BR (1997) Dexamethasone and 11-dehydrodexamethasone as tools to investigate the isozymes of 11 beta-hydroxysteroid dehydrogenase in vitro and in vivo. J Endocrinol 153: 41–48PubMedCrossRefGoogle Scholar
  2. 2.
    Brotman DJ, Girod JP, Garcia MJ et al. (2005) Effects of short-term glucocorticoids on cardiovascular biomarkers. J Clin Endocrinol Metab 90: 3202–3208PubMedCrossRefGoogle Scholar
  3. 3.
    Collins S, Caron MG, Lefkowitz RJ (1988) Beta-adrenergic receptors in hamster smooth muscle cells are transcriptionally regulated by glucocorticoids. J Biol Chem 263: 9067–9070PubMedGoogle Scholar
  4. 4.
    de Kloet ER, Vreugdenhil E, Oitzl MS, Joels M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19: 269–301CrossRefGoogle Scholar
  5. 5.
    Diederich S, Scholz T, Eigendorff E et al. (2004) Pharmacodynamics and pharmacokinetics of synthetic mineralocorticoids and glucocorticoids: receptor transactivation and prereceptor metabolism by 11beta-hydroxysteroid-dehydrogenases. Horm Metab Res 36: 423–429PubMedCrossRefGoogle Scholar
  6. 6.
    Dodt C, Keyser B, Molle M et al. (2000) Acute suppression of muscle sympathetic nerve activity by hydrocortisone in humans. Hypertension 35: 758–763PubMedGoogle Scholar
  7. 7.
    Geller DA, Nussler AK, Di Silvio M et al. (1993) Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci U S A 90: 522–526PubMedCrossRefGoogle Scholar
  8. 8.
    Hayashi T, Nakai T, Miyabo S (1991) Glucocorticoids increase Ca2+ uptake and [3H]dihydropyridine binding in A7r5 vascular smooth muscle cells. Am J Physiol 261: C106–C114PubMedGoogle Scholar
  9. 9.
    Kennedy B, Ziegler MG (1991) Cardiac epinephrine synthesis. Regulation by a glucocorticoid. Circulation 84: 891–895PubMedGoogle Scholar
  10. 10.
    Lindholm J, Juul S, Jorgensen JO et al. (2001) Incidence and late prognosis of Cushing’s syndrome: a population-based study. J Clin Endocrinol Metab 86: 117–123PubMedCrossRefGoogle Scholar
  11. 11.
    Montrella-Waybill M, Clore JN, Schoolwerth AC, Watlington CO (1991) Evidence that high dose cortisol-induced Na+ retention in man is not mediated by the mineralocorticoid receptor. J Clin Endocrinol Metab 72: 1060–1066PubMedCrossRefGoogle Scholar
  12. 12.
    Nakamoto H, Suzuki H, Kageyama Y et al. (1995) Central nervous system mediates an antihypertensive property in glucocorticoid hypertension in dogs. J Hypertens 13: 1169–1179PubMedCrossRefGoogle Scholar
  13. 13.
    O’Banion MK, Sadowski HB, Winn V, Young DA (1991) A serum- and glucocorticoid-regulated 4-kilobase mRNA encodes a cyclooxygenase-related protein. J Biol Chem 266: 23261–23267Google Scholar
  14. 14.
    O’Banion MK, Winn VD, Young DA (1992) cDNA cloning and functional activity of a glucocorticoid-regulated inflammatory cyclooxygenase. Proc Natl Acad Sci U S A 89: 4888–4892CrossRefGoogle Scholar
  15. 15.
    Orlowski J, Lingrel JB (1990) Thyroid and glucocorticoid hormones regulate the expression of multiple Na,K-ATPase genes in cultured neonatal rat cardiac myocytes. J Biol Chem 265: 3462–3470PubMedGoogle Scholar
  16. 16.
    Pecori GF, Moro M, Cavagnini F (2003) Gender-related differences in the presentation and course of Cushing’s disease. J Clin Endocrinol Metab 88: 1554–1558CrossRefGoogle Scholar
  17. 17.
    Pirpiris M, Sudhir K, Yeung S et al. (1992) Pressor responsiveness in corticosteroid-induced hypertension in humans. Hypertension 19: 567–574PubMedGoogle Scholar
  18. 18.
    Quinkler M, Stewart PM (2003) Hypertension and the cortisol-cortisone shuttle. J Clin Endocrinol Metab 88: 2384–2392PubMedCrossRefGoogle Scholar
  19. 19.
    Sakaue M, Hoffman BB (1991) Glucocorticoids induce transcription and expression of the alpha 1B adrenergic receptor gene in DTT1 MF-2 smooth muscle cells. J Clin Invest 88: 385–389PubMedCrossRefGoogle Scholar
  20. 20.
    Sambhi MP, Weil MH, Udhoji VN (1965) Acute pharmacodynamic effects of glucocorticoids. Cardiac output and related hemodynamic changes in normal subjects and patients in shock. Circulation 31: 523–530PubMedGoogle Scholar
  21. 21.
    Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21: 55–89PubMedCrossRefGoogle Scholar
  22. 22.
    Sato A, Funder JW, Okubo M et al. (1995) Glucocorticoid-induced hypertension in the elderly. Relation to serum calcium and family history of essential hypertension. Am J Hypertens 8: 823–828PubMedCrossRefGoogle Scholar
  23. 23.
    Scherrer U, Vollenweider P, Randin D et al. (1993) Suppression of insulin-induced sympathetic activation and vasodilation by dexamethasone in humans. Circulation 88: 388–394PubMedGoogle Scholar
  24. 24.
    Seckl JR, Walker BR (2001) Minireview: 11beta-hydroxysteroid dehydrogenase type 1- a tissue-specific amplifier of glucocorticoid action. Endocrinology 142: 1371–1376PubMedCrossRefGoogle Scholar
  25. 25.
    Stewart PM, Krozowski ZS (1999) 11beta-Hydroxysteroid dehydrogenase. Vitam Horm 57: 249–324PubMedCrossRefGoogle Scholar
  26. 26.
    Sudhir K, Jennings G, Esler MD et al. (1989) Hydrocortisone-induced hypertension in humans: pressor responsiveness and sympathetic function. Hypertension 13: 416–421PubMedGoogle Scholar
  27. 27.
    Tasker JG, Di S, Malcher-Lopes R (2006) Minireview: rapid glucocorticoid signaling via membrane-associated receptors. Endocrinology 147: 5549–5556PubMedCrossRefGoogle Scholar
  28. 28.
    Walker G, Pfeilschifter J, Kunz D (1997) Mechanisms of suppression of inducible nitric-oxide synthase (iNOS) expression in interferon (IFN)-gamma-stimulated RAW 264.7 cells by dexamethasone. Evidence for glucocorticoid-induced degradation of iNOS protein by calpain as a key step in post-transcriptional regulation. J Biol Chem 272: 16679–16687PubMedCrossRefGoogle Scholar
  29. 29.
    Whitworth JA, Mangos GJ, Kelly JJ (2000) Cushing, cortisol, and cardiovascular disease. Hypertension 36: 912–916PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  1. 1.Präklinik - Interdisziplinäres NotfallzentrumStädtisches Klinikum München BogenhausenMünchenDeutschland
  2. 2.Medizinische Klinik I Universitätsklinikum Schleswig Holstein, Campus LübeckLübeckDeutschland

Personalised recommendations