Der Internist

, Volume 48, Issue 2, pp 164–172

Komplexe diätetische und Pharmakotherapie beim metabolischen Syndrom

Schwerpunkt: Metabolisches Syndrom
  • 78 Downloads

Zusammenfassung

Das metabolische Syndrom bezeichnet einen Risikocluster (Adipositas, Glukosestoffwechselstörung, Dyslipidämie, Hypertonie), der durch adipositasbedingte Mechanismen der zellulären Stoffwechselregulation und der systemischen Energiebalance zu entstehen scheint. Eine ballaststoffarme, fettreiche Ernährung und Bewegungsmangel sind wichtige Ursachen. Eine entsprechende Ernährungsumstellung kombiniert mit regelmäßiger körperlicher Aktivität und moderater Gewichtsabnahme um etwa 5% führte zu einer massiven Reduktion der Folgekrankheit Typ-2-Diabetes um 60% bei Prädiabetikern und reduzierte Risikomerkmale des metabolischen Syndroms. Pharmakologische Therapieansätze mit Metformin oder Acarbose waren etwa halb so wirksam in der Reduktion neuer Diabetesfälle, während Thiazolidindione ebenfalls eine etwa 60%ige Diabetesreduktion bei Prädiabetikern trotz Gewichtszunahme erreichten. Eine vernünftige und realisierbare Änderung des Lebensstils erlaubt eine hoch effiziente Therapie des metabolischen Syndroms, neben der auch wirksame pharmakologische Optionen bestehen.

Schlüsselwörter

Stoffwechselerkrankungen Ernährungsmedizin Adipositas Atherosklerose Pharmakologische Prävention 

Complex dietary measures and pharmacotherapy for metabolic syndrome

Abstract

Metabolic syndrome is characterized by a group of risk factors (obesity, glucose metabolism disorders, dyslipidemia and hypertension) which appear to be caused by obesity related mechanisms of cellular metabolism and the systemic energy balance. A fibre poor diet rich in fat combined with lack of physical activity are important causative factors. A suitable change in diet combined with regular physical exercise and a moderate weight loss of about 5% leads to a massive reduction in the consequential disease diabetes type 2 by 60% in prediabetics and reduces the risk factors for metabolic syndrome. Pharmacological therapies using metformin or acarbose were about half as effective in reducing new cases of diabetes, while thiazolidinedione also led to a 60% reduction in new diabetes cases in prediabetics in spite of a weight increase. A sensible and realisable change in lifestyle provides a highly efficient therapy of metabolic syndrome, in addition to effective pharmacological options.

Keywords

Metabolic diseases Nutritional medicine Obesity Atherosclerosis Pharmacological prevention 

Literatur

  1. 1.
    Reaven GM (2005) The metabolic syndrome: requiescat in pace. Clin Chem 51: 931–938CrossRefPubMedGoogle Scholar
  2. 2.
    Grundy SM, Cleeman JI, Daniels SR et al. (2005) Diagnosis and management of the metabolic syndrome: an american heart association/national heart, lung, and blood institute scientific statement: executive summary. Circulation 112: e285–290CrossRefGoogle Scholar
  3. 3.
    Scuteri A, Najjar SS, Morrell CH et al. (2005) The metabolic syndrome in older individuals: prevalence and prediction of cardiovascular events: the Cardiovascular Health Study. Diabetes Care 28: 882–887PubMedCrossRefGoogle Scholar
  4. 4.
    Knowler WC, Barrett-Connor E, Fowler SE et al. (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346: 393–403PubMedCrossRefGoogle Scholar
  5. 5.
    Tuomilehto J, Lindstrom J, Eriksson JG et al. (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344: 1343–1350CrossRefPubMedGoogle Scholar
  6. 6.
    Makowski L, Hotamisligil GS (2005) The role of fatty acid binding proteins in metabolic syndrome and atherosclerosis. Curr Opin Lipidol 16: 543–548CrossRefPubMedGoogle Scholar
  7. 7.
    Desvergne B, Michalik L, Wahli W (2006) Transcriptional regulation of metabolism. Physiol Rev 86: 465–514CrossRefPubMedGoogle Scholar
  8. 8.
    Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115: 1111–1119CrossRefPubMedGoogle Scholar
  9. 9.
    O’Brien KD, Brehm BJ, Seeley RJ et al. (2005) Diet-induced weight loss is associated with decreases in plasma serum amyloid a and C-reactive protein independent of dietary macronutrient composition in obese subjects. J Clin Endocrinol Metab 90: 2244–2249CrossRefPubMedGoogle Scholar
  10. 10.
    Liu S, Stampfer MJ, Hu FB et al. (1999) Whole-grain consumption and risk of coronary heart disease: results from the Nurses‘ Health Study. Am J Clin Nutr 70: 412–419PubMedGoogle Scholar
  11. 11.
    Hu FB, Manson JE, Stampfer MJ et al. (2001) Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 345: 790–797CrossRefPubMedGoogle Scholar
  12. 12.
    McKeown NM, Meigs JB, Liu S et al. (2004) Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care 27: 538–546PubMedCrossRefGoogle Scholar
  13. 13.
    Heidemann C, Hoffmann K, Spranger J et al. (2005) A dietary pattern protective against type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study cohort. Diabetologia 48: 1126–1134CrossRefPubMedGoogle Scholar
  14. 14.
    Spranger J, Kroke A, Mohlig M et al. (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52: 812–817PubMedCrossRefGoogle Scholar
  15. 15.
    Astrup A (2005) The role of dietary fat in obesity. Semin Vasc Med 5: 40–47CrossRefPubMedGoogle Scholar
  16. 16.
    Willett WC, Leibel RL (2002) Dietary fat is not a major determinant of body fat. Am J Med 113 (Suppl 9B): 47S–59SCrossRefPubMedGoogle Scholar
  17. 17.
    Vessby B, Unsitupa M, Hermansen K et al. (2001) Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU Study. Diabetologia 44: 312–319CrossRefPubMedGoogle Scholar
  18. 18.
    Lopez-Garcia E, Schulze MB, Meigs JB et al. (2005) Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J Nutr 135: 562–566PubMedGoogle Scholar
  19. 19.
    Pischon T, Hankinson SE, Hotamisligil GS et al. (2003) Habitual dietary intake of n-3 and n-6 fatty acids in relation to inflammatory markers among US men and women. Circulation 108: 155–160CrossRefPubMedGoogle Scholar
  20. 20.
    Kasim-Karakas SE, Tsodikov A, Singh U et al. (2006) Responses of inflammatory markers to a low-fat, high-carbohydrate diet: effects of energy intake. Am J Clin Nutr 83: 774–779PubMedGoogle Scholar
  21. 21.
    Ludwig DS (2002) The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 287: 2414–2423CrossRefPubMedGoogle Scholar
  22. 22.
    Hu FB, van Dam RM, Liu S (2001) Diet and risk of Type II diabetes: the role of types of fat and carbohydrate. Diabetologia 44: 805–817CrossRefPubMedGoogle Scholar
  23. 23.
    Schulze MB, Manson JE, Ludwig DS et al. (2004) Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA 292: 927–934CrossRefPubMedGoogle Scholar
  24. 24.
    Raben A (2002) Should obese patients be counselled to follow a low-glycaemic index diet? No. Obesity Reviews 3: 245–256CrossRefPubMedGoogle Scholar
  25. 25.
    van Dam RM, Visscher AW, Feskens EJ et al. (2000) Dietary glycemic index in relation to metabolic risk factors and incidence of coronary heart disease: the Zutphen Elderly Study. Eur J Clin Nutr 54: 726–731CrossRefPubMedGoogle Scholar
  26. 26.
    Schulze MB, Liu S, Rimm EB et al. (2004) Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr 80: 348–356PubMedGoogle Scholar
  27. 27.
    Chiasson JL, Josse RG, Gomis R et al. (2002) Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359: 2072–2077CrossRefPubMedGoogle Scholar
  28. 28.
    Padwal R, Majumdar SR, Johnson JA et al. (2005) A systematic review of drug therapy to delay or prevent type 2 diabetes. Diabetes Care 28: 736–744PubMedCrossRefGoogle Scholar
  29. 29.
    van de Laar FA, Lucassen PL, Akkermans RP et al. (2005) Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care 28: 154–163PubMedCrossRefGoogle Scholar
  30. 30.
    McMillan-Price J, Petocz P, Atkinson F et al. (2006) Comparison of 4 diets of varying glycemic load on weight loss and cardiovascular risk reduction in overweight and obese young adults: a randomized controlled trial. Arch Intern Med 166: 1466–1475PubMedCrossRefGoogle Scholar
  31. 31.
    Mayer-Davis EJ, Dhawan A, Liese AD et al. (2006) Towards understanding of glycaemic index and glycaemic load in habitual diet: associations with measures of glycaemia in the Insulin Resistance Atherosclerosis Study. Br J Nutr 95: 397–405CrossRefPubMedGoogle Scholar
  32. 32.
    Weickert MO, Pfeiffer AF (2005) [Preventing type 2 diabetes: what does dietary fiber achieve?]. MMW Fortschr Med 147: 28–30PubMedGoogle Scholar
  33. 33.
    Liese AD, Roach AK, Sparks KC et al. (2003) Whole-grain intake and insulin sensitivity: the Insulin Resistance Atherosclerosis Study. Am J Clin Nutr 78: 965–971PubMedGoogle Scholar
  34. 34.
    Sahyoun NR, Jacques PF, Zhang XL et al. (2006) Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults. Am J Clin Nutr 83: 124–131PubMedGoogle Scholar
  35. 35.
    Lindstrom J, Peltonen M, Eriksson JG et al. (2006) High-fibre, low-fat diet predicts long-term weight loss and decreased type 2 diabetes risk: the Finnish Diabetes Prevention Study. Diabetologia 49: 912–920CrossRefPubMedGoogle Scholar
  36. 36.
    Brown L, Rosner B, Willett WW et al. (1999) Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 69: 30–42PubMedGoogle Scholar
  37. 37.
    Weickert MO, Mohlig M, Koebnick C et al. (2005) Impact of cereal fibre on glucose-regulating factors. Diabetologia 48: 2343–2353CrossRefPubMedGoogle Scholar
  38. 38.
    Weickert MO, Mohlig M, Schofl C et al. (2006) Cereal fiber improves whole-body insulin sensitivity in overweight and obese women. Diabetes Care 29: 775–780CrossRefPubMedGoogle Scholar
  39. 39.
    Robertson MD, Currie JM, Morgan LM et al. (2003) Prior short-term consumption of resistant starch enhances postprandial insulin sensitivity in healthy subjects. Diabetologia 46: 659–665PubMedGoogle Scholar
  40. 40.
    Weigle DS, Breen PA, Matthys CC et al. (2005) A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr 82: 41–48PubMedGoogle Scholar
  41. 41.
    Astrup A (2005) The satiating power of protein – a key to obesity prevention? Am J Clin Nutr 82: 1–2PubMedGoogle Scholar
  42. 42.
    Gannon MC, Nuttall FQ (2004) Effect of a high-protein, low-carbohydrate diet on blood glucose control in people with type 2 diabetes. Diabetes 53: 2375–2382PubMedCrossRefGoogle Scholar
  43. 43.
    Gannon MC, Nuttall FQ (2006) Control of blood glucose in type 2 diabetes without weight loss by modification of diet composition. Nutr Metab 3: 16CrossRefGoogle Scholar
  44. 44.
    Gannon MC, Nuttall JA, Damberg G et al. (2001) Effect of protein ingestion on the glucose appearance rate in people with type 2 diabetes. J Clin Endocrinol Metab 86: 1040–1047CrossRefPubMedGoogle Scholar
  45. 45.
    Tremblay F, Krebs M, Dombrowski L et al. (2005) Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 54: 2674–2684PubMedCrossRefGoogle Scholar
  46. 46.
    Liu S, Manson JE, Lee IM et al. (2000) Fruit and vegetable intake and risk of cardiovascular disease: the Women’s Health Study. Am J Clin Nutr 72: 922–928PubMedGoogle Scholar
  47. 47.
    Jiang R, Manson JE, Stampfer MJ et al. (2002) Nut and peanut butter consumption and risk of type 2 diabetes in women. JAMA 288: 2554–2560CrossRefPubMedGoogle Scholar
  48. 48.
    Heart Protection Study Collaborative Group (2002) MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360: 23–33CrossRefPubMedGoogle Scholar
  49. 49.
    Hercberg S, Bertrais S, Czernichow S et al. (2005) Alterations of the lipid profile after 7.5 years of low-dose antioxidant supplementation in the SU.VI.MAX Study. Lipids 40: 335–342CrossRefPubMedGoogle Scholar
  50. 50.
    Czernichow S, Couthouis A, Bertrais S et al. (2006) Antioxidant supplementation does not affect fasting plasma glucose in the Supplementation with Antioxidant Vitamins and Minerals (SU.VI.MAX) study in France: association with dietary intake and plasma concentrations. Am J Clin Nutr 84: 395–399PubMedGoogle Scholar
  51. 51.
    Loscalzo J (2006) Homocysteine trials – clear outcomes for complex reasons. N Engl J Med 354: 1629–1632CrossRefPubMedGoogle Scholar
  52. 52.
    Brage S, Wedderkopp N, Ekelund U et al. (2004) Features of the metabolic syndrome are associated with objectively measured physical activity and fitness in Danish children: the European Youth Heart Study (EYHS). Diabetes Care 27: 2141–2148PubMedCrossRefGoogle Scholar
  53. 53.
    Lindstrom J, Louheranta A, Mannelin M et al. (2003) The Finnish Diabetes Prevention Study (DPS): lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care 26: 3230–3236PubMedCrossRefGoogle Scholar
  54. 54.
    Wareham NJ, van Sluijs EM, Ekelund U (2005) Physical activity and obesity prevention: a review of the current evidence. Proc Nutr Soc 64: 229–247CrossRefPubMedGoogle Scholar
  55. 55.
    Laaksonen DE, Lindstrom J, Lakka TA et al. (2005) Physical activity in the prevention of type 2 diabetes: the Finnish diabetes prevention study. Diabetes 54: 158–165PubMedCrossRefGoogle Scholar
  56. 56.
    Hambrecht R, Walther C, Mobius-Winkler S et al. (2004) Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: a randomized trial. Circulation 109: 1371–1378CrossRefPubMedGoogle Scholar
  57. 57.
    Viollet B, Foretz M, Guigas B et al. (2006) Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol 574 (Pt 1): 41–53CrossRefPubMedGoogle Scholar
  58. 58.
    Ruderman NB, Cacicedo JM, Itani S et al. (2003) Malonyl-CoA and AMP-activated protein kinase (AMPK): possible links between insulin resistance in muscle and early endothelial cell damage in diabetes. Biochem Soc Trans 31: 202–206PubMedCrossRefGoogle Scholar
  59. 59.
    Sjostrom L, Lindroos AK, Peltonen M et al. (2004) Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med 351: 2683–2693CrossRefPubMedGoogle Scholar
  60. 60.
    Scholze J, Patschan S, Dorffel Y et al. (2005) [Therapy of obesity-associated hypertension]. Dtsch Med Wochenschr 130: 2645–2650CrossRefPubMedGoogle Scholar
  61. 61.
    Cruickshank JM (2002) Beta-blockers and diabetes: the bad guys come good. Cardiovasc Drugs Ther 16: 457–470CrossRefPubMedGoogle Scholar
  62. 62.
    Schupp M, Clemenz M, Gineste R et al. (2005) Molecular characterization of new selective peroxisome proliferator-activated receptor {gamma} modulators with angiotensin receptor blocking activity. Diabetes 54: 3442–3452PubMedCrossRefGoogle Scholar
  63. 63.
    Bosch J, Yusuf S, Gerstein HC et al. (2006) Effect of ramipril on the incidence of diabetes. N Engl J Med 355: 1551–1562CrossRefPubMedGoogle Scholar
  64. 64.
    Dormandy JA, Charbonnel B, Eckland DJ et al. (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366: 1279–1289CrossRefPubMedGoogle Scholar
  65. 65.
    Gerstein HC, Yusuf S, Bosch J et al. (2006) Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 368: 1096–1105CrossRefPubMedGoogle Scholar
  66. 66.
    Buchanan TA, Xiang AH, Peters RK et al. (2002) Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women. Diabetes 51: 2796–2803PubMedCrossRefGoogle Scholar
  67. 67.
    Van Gaal LF, Rissanen AM, Scheen AJ et al. (2005) Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365: 1389–1397CrossRefPubMedGoogle Scholar
  68. 68.
    Despres JP, Golay A, Sjostrom L (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353: 2121–2134CrossRefPubMedGoogle Scholar
  69. 69.
    Pi-Sunyer FX, Aronne LJ, Heshmati HM et al. (2006) Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295: 761–775CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  1. 1.Abt. Klinische ErnährungDeutsches Institut für Ernährungsforschung Potsdam-RehbrückeNuthetalDeutschland
  2. 2.Abt. Endokrinologie, Diabetes und ErnährungsmedizinCampus Benjamin Franklin, Charité Universitätsmedizin BerlinBerlinDeutschland

Personalised recommendations