Der Internist

, Volume 47, Supplement 1, pp S40–S48 | Cite as

Proteomanalyse

Basis für individualisierte Pankreaskarzinomtherapie?
  • J. M. Löhr
  • R. Faissner
  • P. Findeisen
  • M. Neumaier
Individualisierte Therapie – ein Paradigmenwechsel?

Zusammenfassung

Das Pankreasadenokarzinom gehört zu den soliden Tumoren mit der schlechtesten Prognose. In der Vergangenheit haben die Erforschung von Genom und Messenger-RNA (Genomics und Transcriptomics) eine Fülle von Daten geliefert, ohne dass dies zu klinisch verwertbaren Markern für Diagnostik oder Prognose geführt hat. Die neue Hoffnung liegt hier auf der Proteomanalyse, die gegenüber der RNA-Analyse – neben der höheren funktionellen Bedeutung des Proteoms – den konzeptionellen Vorteil hat, posttranslationale Veränderungen und Wirtsfaktoren mit einzuschließen. Diese beiden Faktoren determinieren wahrscheinlich das größte Hindernis beim Überleben der Patienten, nämlich die Chemoresistenz. Verschiedene Strategien, um das hoch komplexe und dynamische Proteom zu untersuchen, werden in Bezug auf das Pankreaskarzinom dargelegt und kommentiert. Noch steckt die Proteomforschung – speziell beim Pankreaskarzinom – in ihren Anfängen, aber die ersten Erkenntnisse lassen hoffen, ein neues, proteinchemisches Verständnis der Tumorbiologie zu entwickeln und hochspezifische diagnostische Marker zu schaffen, die eine Basis für eine rationale und gegebenenfalls auch individualisierte Therapie bilden.

Schlüsselwörter

Pankreaskarzinom Chemoresistenz Proteomanalyse Massenspektrometrie Proteinprofiling 

Proteome analysis – basis for individualized pancreatic carcinoma therapy?

Abstract

Ductal pancreatic adenocarcinoma is a dismal disease, having the worst prognosis of all solid tumors. While genomics and transcriptomics have provided a wealth of data, no contribution has been made to clinical medicine in terms of diagnostic or prognostic markers. Hope lies in yet another novel technology, proteomics. Conceptually, proteomics bears the advantage of incorporating both posttranslational modifications as well as host factors. This is thought to be important in factors influencing survival such as chemoresistance. This tutorial review discusses the state of the art in pancreatic cancer proteomics in light of technical developments. At this moment, proteomics is still at the beginning in clinical application. First results, however, suggest some hope for the development of a new understanding of the molecular biology in pancreatic cancer yielding into very specific markers of disease or allowing a rational and individualized therapy.

Keywords

Pancreatic cancer Chemoresistance Proteomics Mass Spectrometry Protein profiling 

Notes

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Literatur

  1. 1.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422: 198–207CrossRefPubMedGoogle Scholar
  2. 2.
    Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1: 845–867CrossRefPubMedGoogle Scholar
  3. 3.
    Bhattacharyya S, Siegel ER, Petersen GM, Chari ST, Suva LJ, Haun RS (2004) Diagnosis of pancreatic cancer using serum proteomic profiling. Neoplasia 6: 674–686PubMedGoogle Scholar
  4. 4.
    Brandt R, Grützmann R, Bauer A et al. (2004) DNA microarray analysis of pancreatic malignancies. Pancreatology 4: 587–597CrossRefPubMedGoogle Scholar
  5. 5.
    Carpelan-Holmström M, Nordling S, Pukkala E et al. (2005) Does anyone survive pancreatic ductal adenocarcinoma? A nationwide study re-evaluating the data of the Finnish Cancer Registry. Gut 54: 385–387CrossRefPubMedGoogle Scholar
  6. 6.
    Check E (2004) Proteomics and cancer: running before we can walk? Nature 429: 496–497CrossRefPubMedGoogle Scholar
  7. 7.
    Chen R, Yi EC, Donohoe S et al. (2005) Pancreatic cancer proteome: the proteins that underlie invasion, metastasis, and immunologic escape. Gastroenterology 129: 1187–1197CrossRefPubMedGoogle Scholar
  8. 8.
    Evans WE, Relling MV (2004) Moving towards individualized medicine with pharmacogenomics. Nature 429: 464–468CrossRefPubMedGoogle Scholar
  9. 9.
    Faissner R, Funk A, Wandschneider S, Schnölzer M, Löhr M (2005) Chemoresistance of pancreatic tumors – a proteome analysis (abstract). Pancreatology 5: 67CrossRefPubMedGoogle Scholar
  10. 10.
    Fehring V, Wandschneider S, Löhr M (2001) Physical markers for landmarking fluorescently stained gels that facilitate automated spot-picking. Electrophoresis 22: 2903–2907CrossRefPubMedGoogle Scholar
  11. 11.
    Feuring-Buske M, Hartmann EM, Ott G, Reuter H, Buske C, Rosenwald A (2006) DNA-Chips in der Diagnostik hämatologischer Neoplasien. Internist 47: 39–46CrossRefPubMedGoogle Scholar
  12. 12.
    Goggins M (2005) Molecular markers of early pancreatic cancer. J Clin Oncol 23: 4524–4531CrossRefPubMedGoogle Scholar
  13. 13.
    Görg A, Weiss W, Dunn MJ (2005) Current two-dimensional electrophoresis technology for proteomics. Proteomics 5: 826–827Google Scholar
  14. 14.
    Grønborg M, Bunkenborg J, Kristiansen TZ et al. (2004) Comprehensive proteomic analysis of human pancreatic juice. J Proteome Res 3: 1042–1055CrossRefPubMedGoogle Scholar
  15. 15.
    Hanash SM, Bobek MP, Rickman DS et al. (2002) Integrating cancer genomics and proteomics in the post-genome era. Proteomics 2: 69–75CrossRefPubMedGoogle Scholar
  16. 16.
    Haubitz M, Fliser D, Haller H (2004) Proteomanalyse – eine neue Perspektive für die klinische Diagnostik. Dtsch Ärztebl 101: 1514–1517Google Scholar
  17. 17.
    Hazlehurst LA, Dalton WS (2001) Mechanisms associated with cell adhesion mediated drug resistance (CAM-DR) in hematopoietic malignancies. Cancer Metastasis Rev 20: 43–50CrossRefPubMedGoogle Scholar
  18. 18.
    Hazlehurst LA, Enkemann SA, Beam CA et al. (2003) Genotypic and phenotypic comparisons of de novo and acquired melphalan resistance in an isogenic multiple myeloma cell line model. Cancer Res 63: 7900–7906PubMedGoogle Scholar
  19. 19.
    Hong SH, Misek DE, Wang H et al. (2004) An autoantibody-mediated immune response to calreticulin isoforms in pancreatic cancer. Cancer Res 64: 5504–5510CrossRefPubMedGoogle Scholar
  20. 20.
    Hu L, Evers S, Lu ZH, Shen Y, Chen J (2004) Two-dimensional protein database of human pancreas. Electrophoresis 25: 512–518CrossRefPubMedGoogle Scholar
  21. 21.
    Jemal A, Murray T, Ward E et al. (2005) Cancer statistics, 2005. CA Cancer J Clin 55: 10–30PubMedGoogle Scholar
  22. 22.
    Koch W, Neusüß C, Pelzing M, Mischak H (2005) Capillary electrophoresis: mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrometry Rev 24: 1–20CrossRefGoogle Scholar
  23. 23.
    Koopmann J, Zhang Z, White N et al. (2004) Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry. Clin Cancer Res 10: 860–868CrossRefPubMedGoogle Scholar
  24. 24.
    Löhr M (2006) Is it possible to survive pancreatic cancer? Nat Clin Pract Gastroenterol Hepatol 3: 236–237PubMedGoogle Scholar
  25. 25.
    Löhr M, Faissner R (2004) Proteomics in pancreatic disease. Pancreatology 4: 67–75CrossRefPubMedGoogle Scholar
  26. 26.
    Lu Z, Hu L, Evers S, Chen J, Shen Y (2004) Differential expression profiling of human pancreatic adenocarcinoma and healthy pancreatic tissue. Proteomics 4: 3975–3988CrossRefPubMedGoogle Scholar
  27. 27.
    Miyamoto H, Murakami T, Tsuchida K, Sugino H, Miyake H, Tashiro S (2004) Tumor-stroma interaction of human pancreatic cancer: acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins. Pancreas 28: 38–44CrossRefPubMedGoogle Scholar
  28. 28.
    Möller A, Malerczyk C, Völker U, Stöppler H, Maser E (2002) Monitoring daunorubicin-induced alterations in protein expression in pancreas carcinoma cells by two-dimensional gel electrophoresis. Proteomics 2: 697–705CrossRefPubMedGoogle Scholar
  29. 29.
    Neoptolemos JP, Stocken DD, Friess H et al. (2004) A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 350: 1200–1210CrossRefPubMedGoogle Scholar
  30. 30.
    Patton WF (2002) Detection technologies in proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci 771: 3–31CrossRefPubMedGoogle Scholar
  31. 31.
    Petricoin EF, Ardekani AM, Hitt BA et al. (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359: 572–577CrossRefPubMedGoogle Scholar
  32. 32.
    Poland J, Urbani A, Lage H, Schnölzer M, Sinha P (2004) Study of the development of thermoresistance in human pancreatic carcinoma cell lines using proteome analysis. Electrophoresis 25: 173–183CrossRefPubMedGoogle Scholar
  33. 33.
    Posadas EM, Simpkins F, Liotta LA, MacDonald C, Kohn EC (2005) Proteomic analysis for the early detection and rational treatment of cancer – realistic hope? Ann Oncol 16: 16–22CrossRefPubMedGoogle Scholar
  34. 34.
    Pusztai L, Gregory BW, Baggerly KA et al. (2004) Pharmacoproteomic analysis of prechemotherapy and postchemotherapy plasma samples from patients receiving neoadjuvant or adjuvant chemotherapy for breast carcinoma. Cancer 100: 1814–1822CrossRefPubMedGoogle Scholar
  35. 35.
    Rosty C, Christa L, Kuzdzal S et al. (2002) Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res 62: 1868–1875PubMedGoogle Scholar
  36. 36.
    Shekouh AR, Thompson CC, Prime W et al. (2003) Application of laser capture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreatic ductal adenocarcinoma. Proteomics 3: 1988–2001CrossRefPubMedGoogle Scholar
  37. 37.
    Shen J, Person MD, Zhu J, Abbruzzese JL, Li D (2004) Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res 64: 9018–9026CrossRefPubMedGoogle Scholar
  38. 38.
    Sinha P, Hütter G, Kottgen E, Dietel M, Schadendorf D, Lage H (1999) Increased expression of epidermal fatty acid binding protein, cofilin, and 14-3-3-sigma (stratifin) detected by two-dimensional gel electrophoresis, mass spectrometry and microsequencing of drug-resistant human adenocarcinoma of the pancreas. Electrophoresis 20: 2952–2960CrossRefPubMedGoogle Scholar
  39. 39.
    Sitek B, Lüttges J, Marcus K et al. (2005) Application of fluorescence difference gel electrophoresis saturation labelling for the analysis of microdissected precursor lesions of pancreatic ductal adenocarcinoma. Proteomics 5: 2665–2679CrossRefPubMedGoogle Scholar
  40. 40.
    Villanueva J, Shaffer DR, Philip J et al. (2006) Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest 116: 271–284CrossRefPubMedGoogle Scholar
  41. 41.
    Vimalachandran D, Greenhalf W, Thompson C et al. (2005) High nuclear S100A6 (Calcyclin) is significantly associated with poor survival in pancreatic cancer patients. Cancer Res 65: 3218–3225PubMedGoogle Scholar
  42. 42.
    Wandschneider S, Fehring V, Jacobs-Emeis S, Thiesen HJ, Löhr M (2001) Autoimmune pancreatic disease: preparation of pancreatic juice for proteome analysis. Electrophoresis 22: 4383–4390CrossRefPubMedGoogle Scholar
  43. 43.
    Xia Q, Kong XT, Zhang GA, Hou XJ, Qiang H, Zhong RQ (2005) Proteomics-based identification of DEAD-box protein 48 as a novel autoantigen, a prospective serum marker for pancreatic cancer. Biochem Biophys Res Commun 330: 526–532CrossRefPubMedGoogle Scholar
  44. 44.
    Zhang X, Leung SM, Morris CR, Shigenaga MK (2004) Evaluation of a novel, integrated approach using functionalized magnetic beads, bench-top MALDI-TOF-MS with prestructured sample supports, and pattern recognition software for profiling potential biomarkers in human plasma. J Biomol Tech 15: 167–175PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2006

Authors and Affiliations

  • J. M. Löhr
    • 1
    • 3
  • R. Faissner
    • 1
  • P. Findeisen
    • 2
  • M. Neumaier
    • 2
  1. 1.Klinische Kooperationseinheit für Molekulare Gastroenterologie (dkfz E180)II. Medizinische Klinik, Medizinische Fakultät Mannheim der Universität Heidelberg
  2. 2.Institut für Klinische Chemie und LabormedizinMedizinische Fakultät Mannheim der Universität Heidelberg
  3. 3.Klinische Kooperationseinheit für Molekulare Gastroenterologie (dkfz E180)II. Medizinische KlinikMannheim

Personalised recommendations