Der Internist

, Volume 46, Issue 5, pp 538–547 | Cite as

Die neuen Richtlinien zur Behandlung der Hypertonie

Schwerpunkt: Hypertonie

Zusammenfassung

Die Behandlung des Bluthochdrucks ist ein zentrales Element in der Prävention kardiovaskulärer Erkrankungen. Die neue Klassifikation der Hypertonie trägt dem engen Zusammenhang zwischen der Höhe des Blutdrucks und dem kardiovaskulären Risiko Rechnung und bezeichnet einen Blutdruck zwischen 140/90 mmHg und 130/80 mmHg als hochnormal, sodass stets ein Blutdruck <140/90 mmHg erzielt werden sollte. Die therapeutisch zu erreichenden Blutdruckwerte werden aber auch durch das Ausmaß bereits bestehender Endorganschäden bestimmt. Für Patienten mit Diabetes mellitus gelten 130/80 mmHg und für Patienten mit einer Nierenerkrankung und Proteinurie 125/75 mmHg als therapeutischer Zielblutdruck. Für die primäre Therapie werden die 5 Substanzgruppen Diuretika, β-Blocker, Kalziumantagonisten, ACE-Hemmer und Angiotensinrezeptorenblocker empfohlen. Neben der antihypertensiven Wirkung sind substanzspezifische Wirkungen für ACE-Hemmer und Angiotensinrezeptorenblocker beschrieben. Primär kann statt einer Monotherapie auch eine niedrig dosierte Kombinationstherapie sinnvoll sein.

Schlüsselwörter

Bluthochdruck Leitlinien Klassifikation Risikofaktoren Endorganschäden 

New guidelines for treatment of hypertension

Abstract

Treatment of high blood pressure is a central element in prevention of cardiovascular diseases. The new classification of hypertension takes into consideration the close association between blood pressure level and cardiovascular risk and designates blood pressure between 140/90 and 130/80 mmHg as high-normal so that blood pressure <140/90 mmHg should always be the goal. The targeted blood pressure levels are also defined by the extent of end-organ damage already present. The therapeutic objective in patients with diabetes mellitus is a blood pressure level of 130/80 mmHg and in patients with kidney disease and proteinuria 125/75 mmHg. The five substance groups of diuretics, β-blockers, calcium antagonists, ACE inhibitors, and angiotensin receptor blockers are recommended for primary treatment. In addition to the antihypertensive properties, substance-specific effects of ACE inhibitors and angiotensin receptor blockers have been described. Primarily, instead of monotherapy low-dose combination therapy can also be judicious.

Keywords

High blood pressure Guidelines Classification Risk factors End-organ damage 

Literatur

  1. 1.
    Wolf-Maier K, Cooper RS, Kramer H et al. (2004) Hypertension treatment and control in five European countries, Canada, and the United States. Hypertension 43: 10–17Google Scholar
  2. 2.
    Guidelines Sub-Committee World Health Organization (1999) International Society of Hypertension guidelines for the management of hypertension. J Hypertens 17: 151–183Google Scholar
  3. 3.
    European Society of Hypertension Guidelines Committee (2003) European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 21: 1011–1053Google Scholar
  4. 4.
    Lenfant C, Chobanian AV, Jones DW, Roccella EJ; Joint National Committee on the Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (2003) Seventh report of the Joint National Committee on the Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC 7). Hypertension 41: 1178–1179Google Scholar
  5. 5.
    Collins R, Peto R, MacMahon S et al.(1990) Blood pressure, stroke, and coronary heart disease. Part 2, Short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet 335: 827–839Google Scholar
  6. 6.
    MacMahon S, Peto R, Cutler J et al. (1990) Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet 335: 765–774Google Scholar
  7. 7.
    Prospective Studies Collaboration (2002) Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360: 1903–1913Google Scholar
  8. 8.
    Kjeldsen SE, Julius S, Hedner T, Hansson L (2001) Stroke is more common than myocardial infarction in hypertension: analysis based on 11 major randomized intervention trials. Blood Press 10: 190–192Google Scholar
  9. 9.
    Primatesta P, Brookes M, Poulter NR (2001) Improved hypertension management and control. Results from the Health Survey for England 1998. Hypertension 38: 827–832Google Scholar
  10. 10.
    Franklin S, Khan SA, Wong DA, Larson MG, Levy D (1999) Is pulse pressure useful in predicting risk for coronary heart disease? The Framingham Heart Study. Circulation 100: 354–360Google Scholar
  11. 11.
    Anderson KM, Wilson PW, Odell PM, Kannel WB (1991) An updated coronary risk profile. A statement for health professionals. Circulation 83: 356–362Google Scholar
  12. 12.
    Conroy RM, Pyorala K, Fitzgerald AP et al. on behalf of the SCORE Project Group (2003) Prediction of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 24: 987–1003Google Scholar
  13. 13.
    Keil U, Liese AD, Hense HW, Filipiak B, Doring A, Stieber J, Lowel H (1998) Classical risk factors and their impact on incident non-fatal and fatal myocardial infarction and all-cause mortality in southern Germany. Results from the MONICA Augsburg cohort study 1984–1992. Monitoring Trends and Determinants in Cardiovascular Diseases. Eur Heart J 19: 1197–1207Google Scholar
  14. 14.
    Ridker PM (2003) Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 107: 363–369Google Scholar
  15. 15.
    O’Brien E, Waeber B, Parati G, Staessen J, Myers MG (2001) Blood pressure measuring devices: recommendations of the European Society of Hypertension. BMJ 322: 531–536Google Scholar
  16. 16.
    Mancia G, Parati G (2000) Ambulatory blood pressure monitoring and organ damage. Hypertension 36: 894–900Google Scholar
  17. 17.
    Mancia G, Zanchetti A, Agabiti-Rosei E et al. (1997) Ambulatory blood pressure is superior to clinic blood pressure in predicting treatment induced regression of left ventricular hypertrophy. Circulation 95: 1464–1470Google Scholar
  18. 18.
    Staessen JA, Thijs L, Fagard R et al. (1999) Predicting cardiovascular risk using conventional vs ambulatory blood pressure in older patients with systolic hypertension. JAMA 282: 539–546Google Scholar
  19. 19.
    Liu JE, Roman MJ, Pini R, Schwartz JE, Pickering TG, Devereux RB (1999) Cardiac and arterial target organ damage in adults with elevated ambulatory and normal office blood pressure. Ann Intern Med 131: 564–572Google Scholar
  20. 20.
    Cuspidi C, Ambrosioni E, Mancia G, Pessina AC, Trimarco B, Zanchetti A (2002) Role of echocardiography and carotid ultrasonography in stratifying risk in patients with essential hypertension: the Assessment of Prognostic Risk Observational Survey. J Hypertens 20: 1307–1314Google Scholar
  21. 21.
    Liao D, Cooper L, Cai J et al. (1996) Presence and severity of cerebral white matter lesions and hypertension, its treatment, and its control: The ARIC Study. Stroke 27: 2262–2270Google Scholar
  22. 22.
    Skoog I, Lernfelt B, Landahl S et al. (1996) 15-year longitudinal study of blood pressure and dementia. Lancet 347: 1141–1145Google Scholar
  23. 23.
    Kilander L, Nyman H, Boberg M, Hansson L, Lithell H (1998) Hypertension is related to cognitive impairment: A 20-year follow-up of 999 men. Hypertension 31: 780–786Google Scholar
  24. 24.
    Krumme W, Blum U, Schwertfeger E, FlÜgel P, Höllstin F, Schollmeyer P, Rump LC (1996) Diagnosis of renovascular disease by intra- and extrarenal Doppler scanning. Kidney Int 50: 1288–1292Google Scholar
  25. 25.
    PROGRESS Collaborative Study Group (2001) Randomised trial of perindopril based blood pressure-lowering regimen among 6108 individuals with previous stroke or transient ischaemic attack. Lancet 358: 1033–1041Google Scholar
  26. 26.
    The Heart Outcomes Prevention Evaluation Study Investigators (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 342: 145–153Google Scholar
  27. 27.
    Schrier RW, Estacio RO, Esler A, Mehler P (2002) Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and stroke. Kidney Int 61: 1086–1097Google Scholar
  28. 28.
    Vasan RS, Larson MG, Leip EP, Evans JC, O’Donnell CJ, Kannel WB, Levy D (2001) Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med 345: 1291–1297Google Scholar
  29. 29.
    Hansson L, Zanchetti A, Carruthers SG et al. (1998) Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. Lancet 351: 1755–1762Google Scholar
  30. 30.
    UK Prospective Diabetes Study Group (1998) Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes. UKPDS38. BMJ 317: 703–713Google Scholar
  31. 31.
    Estacio RO, Jeffers BW, Hiatt WR, Biggerstaff SL, Gifford N, Schrier RW (1998) The effect of nisoldipine as compared with enalapril on cardiovascular outcomes in patients with non-insulin independent diabetes and hypertension. N Engl J Med 338: 645–652Google Scholar
  32. 32.
    Heart Outcomes Prevention Evaluation (HOPE) Study investigators (2000) Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICROHOPE substudy. Lancet 355: 253–259Google Scholar
  33. 33.
    Blood Pressure Lowering Treatment Trialists‘ Collaboration (2000) Effects of ACE inhibitors, calcium antagonists, and other blood-pressure-lowering drugs: results of prospectively designed overviews of randomised trials. Lancet 356: 1955–1964Google Scholar
  34. 34.
    Gueyffier F, Boutitie F, Boissel JP et al. (1997) The effect of antihypertensive drug treatment on cardiovascular outcomes in women and men. Results from a meta-analysis of individual patient data in randomised controlled trials. Ann Intern Med 126: 761–767Google Scholar
  35. 35.
    Lithell H, Hansson L, Skogg I et al. for the SCOPE Study Group (2003) The Study on Cognition and Prognosis in the Elderly (SCOPE). Principal results of a randomised double-blind intervention trial. J Hypertens 21: 875–886Google Scholar
  36. 36.
    Brenner BM, Cooper ME, De Zeeuw D et al. (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345: 861–869Google Scholar
  37. 37.
    Lewis EJ, Hunsicker LG, Clarke WR et al. (2001) Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 345: 851–860Google Scholar
  38. 38.
    Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P (2001) The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 345: 870–878Google Scholar
  39. 39.
    Staessen JA, Wang J, Thijs L (2003) Cardiovascular prevention and blood pressure reduction: a qualitative overview updated until 1 March 2003. J Hypertens 21: 1055–1076Google Scholar
  40. 40.
    The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group (2002) Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering treatment to prevent Heart Attack Trial (ALLHAT). JAMA 288: 2981–2997Google Scholar
  41. 41.
    Dahlöf B, Devereux RB, Kjeldsen SE et al. (2002) Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359: 995–1003Google Scholar
  42. 42.
    Zanchetti A, Hansson L, Menard J, Leonetti G, Rahn K, Warnold I, Wedel H (2001) Risk assessment and treatment benefit in intensively treated hypertensive patients of the Hypertension Optimal Treatment (HOT) study for the HOT Study Group. J Hypertens 19: 819–825Google Scholar
  43. 43.
    Dinneen SF, Gerstein HC (1997) The association of microalbuminuria and mortality in non-insulin-dependent diabetes mellitus. A systematic overview of the literature. Arch Intern Med 157: 1413–1418Google Scholar
  44. 44.
    Thijs L, Fagard R, Lijnen P, Staessen J, Van Hoof R, Amery A (1992) A metaanalysis of outcome trials in elderly hypertensives. J Hypertens 10: 1103–1109Google Scholar
  45. 45.
    Mogensen CE (1982) Long-term antihypertensive treatment inhibiting progression of diabetic nephropathy. BMJ 285: 685–688Google Scholar

Copyright information

© Springer Medizin Verlag 2005

Authors and Affiliations

  1. 1.Abteilung NephrologieZentrum Innere Medizin der Medizinischen Hochschulen Hannover
  2. 2.Zentrum Innere MedizinMedizinische HochschuleHannover

Personalised recommendations