Advertisement

Der Internist

, Volume 44, Issue 11, pp 1374–1384 | Cite as

Immunologie der Tuberkulose

Konsequenzen für die Impfstoffentwicklung
  • T. Ulrichs
  • S. H. E. Kaufmann
Schwerpunkt: Tuberkulose

Zusammenfassung

Die Tuberkulose ist ein jahrhundertealtes Gesundheitsproblem, das global noch immer unzureichend kontrolliert ist. Eine hohe Durchseuchungsrate mit dem Erreger, Mycobacterium tuberculosis, der im Wirtsorganismus so lange persistiert, bis ihm ein geschwächtes Abwehrsystem die Gelegenheit zur Ausbreitung bietet, und eine aufwendige und kostenintensive Chemotherapie machen die Entwicklung eines geeigneten Impfstoffs dringend erforderlich. Im Folgenden wird die Immunabwehr bei der Tuberkulose vorgestellt, aus der sich verschiedene Strategien und Ansatzpunkte ergeben, den bereits vorhandenen Impfstoff BCG zu verbessern oder alternative Impfstoffe zu entwickeln. An einen neuen Impfstoff ist die Forderung nach einer besseren Immunität als nach natürlicher Infektion zu stellen, die die Erkrankung verhindert, unabhängig davon, ob der Impfstoff vor oder nach Infektion mit M. tuberculosis verabreicht wird.

Schlüsselwörter

Tuberkulose T-Zellen Granulom Persistenz Impfstoffentwicklung 

Abstract

Tuberculosis is an ancient health problem that is still not under control worldwide. High infection rates with the etiologic pathogen, Mycobacterium tuberculosis, persisting within the host organism and waiting for the opportunity to disseminate when the immune system is suppressed, and the long and cost-intensive chemotherapeutic treatment urgently require the development of a novel vaccine. This article reviews the immune response to M. tuberculosis infection resulting in new strategies for the improvement of the available vaccine Mycobacterium bovis BCG or for the development of alternative vaccines. A new vaccine should elicit a better immune response than the natural infection and reliably protect from TB disease, regardless if given prior or post infection with M. tuberculosis.

Keywords

Tuberculosis T-cells Granuloma Persistence Vaccine development 

Notes

Danksagung.

Die Autoren danken Frau Diane Schad für ihre wertvolle Hilfe bei der Erstellung der Graphiken. Die eigene Tuberkuloseforschung wird wie folgt unterstützt: Deutsche Forschungsgemeinschaft (Schwerpunktprogramme "Neue Vakzinierungsstrategien", KA573/4–1), EC (TB Vaccine Cluster) und Bundesministerium für Bildung und Forschung (Kompetenznetzwerk "Pathogenomik", Kompetenznetzwerk "Bakterielle Proteomforschung", Kompetenznetzwerk "Strukturgenomforschung von M. tuberculosis", Kompetenznetzwerk "Proteomforschung membrangebundener Proteine").

Literatur

  1. 1.
    Appelberg R (1994) Protective role of interferon gamma, tumor necrosis factor alpha and interleukin-6 in Mycobacterium tuberculosis and M. avium infections. Immunobiology 191: 520–525PubMedGoogle Scholar
  2. 2.
    Armstrong JA, Hart PD (1975) Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med 142: 1–16PubMedGoogle Scholar
  3. 3.
    Biet F, Kremer L, Wolowczuk I, Delacre M, Locht C (2002) Mycobacterium bovis BCG producing interleukin-18 increases antigen-specific gamma interferon production in mice. Infect Immun 70: 6549–6557CrossRefPubMedGoogle Scholar
  4. 4.
    Boring L, Gosling J, Chensue SW et al. (1997) Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest 100: 2552–2561PubMedGoogle Scholar
  5. 5.
    Brandt L, Elhay M, Rosenkrands I, Lindblad EB, Andersen P (2000) ESAT-6 subunit vaccination against Mycobacterium tuberculosis. Infect Immun 68: 791–795CrossRefPubMedGoogle Scholar
  6. 6.
    Chen P, Ruiz RE, Li Q, Silver RF, Bishai WR (2000) Construction and characterization of a mycobacterium tuberculosis mutant lacking the alternate sigma factor gene, sigF. Infect Immun 68: 5575–5580CrossRefPubMedGoogle Scholar
  7. 7.
    Chensue SW, Warmington KS, Allenspach EJ et al. (1999) Differential expression and cross-regulatory function of RANTES during mycobacterial (type 1) and schistosomal (type 2) antigen-elicited granulomatous inflammation. J Immunol 163: 165–173PubMedGoogle Scholar
  8. 8.
    Cole ST, Brosch R, Parkhill J et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537–544PubMedGoogle Scholar
  9. 9.
    Ehlers MR, Daffe M (1998) Interactions between Mycobacterium tuberculosis and host cells: are mycobacterial sugars the key? Trends Microbiol 6: 328–335CrossRefPubMedGoogle Scholar
  10. 10.
    Emoto M, Emoto Y, Buchwalow IB, Kaufmann SH (1999) Induction of IFN-gamma-producing CD4+ natural killer T cells by Mycobacterium bovis bacillus Calmette Guerin. Eur J Immunol 29: 650–659CrossRefPubMedGoogle Scholar
  11. 11.
    Ernst JD (1998) Macrophage receptors for Mycobacterium tuberculosis. Infect Immun 66: 1277–1281PubMedGoogle Scholar
  12. 12.
    Feng Z, Castillo-Chavez C, Capurro AF (2000) A model for tuberculosis with exogenous reinfection. Theor Popul Biol 57: 235–247CrossRefPubMedGoogle Scholar
  13. 13.
    Flesch IE, Kaufmann SH (1993) Role of cytokines in tuberculosis. Immunobiology 189: 316–339PubMedGoogle Scholar
  14. 14.
    Flynn JL, Chan J (2001) Immunology of tuberculosis. Annu Rev Immunol 19: 93–129PubMedGoogle Scholar
  15. 15.
    Gao JL, Wynn TA, Chang Y et al. (1997) Impaired host defense, hematopoiesis, granulomatous inflammation and type 1-type 2 cytokine balance in mice lacking CC chemokine receptor 1. J Exp Med 185: 1959–1968CrossRefPubMedGoogle Scholar
  16. 16.
    Gatfield J, Pieters J (2000) Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288: 1647–1650CrossRefPubMedGoogle Scholar
  17. 17.
    Glickman MS, Cox JS, Jacobs WR (2000) A novel mycolic acid cyclopropane synthetase is required for coding, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 5: 717–727PubMedGoogle Scholar
  18. 18.
    Heinzel AS, Grotzke JE, Lines RA et al. (2002) HLA-E-dependent presentation of Mtb-derived antigen to human CD8+ T cells. J Exp Med 196: 1473–1481CrossRefPubMedGoogle Scholar
  19. 19.
    Hess J, Miko D, Catic A, Lehmensiek V, Russell DG, Kaufmann SH (1998) Mycobacterium bovis Bacille Calmette-Guerin strains secreting listeriolysin of Listeria monocytogenes. Proc Natl Acad Sci U S A 95: 5299–5304CrossRefPubMedGoogle Scholar
  20. 20.
    Hogaboam CM, Bone-Larson CL, Lipinski S et al. (1999) Differential monocyte chemoattractant protein-1 and chemokine receptor 2 expression by murine lung fibroblasts derived from Th1- and Th2-type pulmonary granuloma models. J Immunol 163: 2193–2201PubMedGoogle Scholar
  21. 21.
    Iho S, Yamamoto T, Takahashi T, Yamamoto S (1999) Oligodeoxynucleotides containing palindrome sequences with internal 5'-CpG-3' act directly on human NK and activated T cells to induce IFN-gamma production in vitro. J Immunol 163: 3642–3652PubMedGoogle Scholar
  22. 22.
    Kaufmann SH (1996) Gamma/delta and other unconventional T lymphocytes: what do they see and what do they do? Proc Natl Acad Sci U S A 93: 2272–2279CrossRefPubMedGoogle Scholar
  23. 23.
    Kaufmann SH (2000) Is the development of a new tuberculosis vaccine possible? Nat Med 6: 955–960CrossRefPubMedGoogle Scholar
  24. 24.
    Kaufmann SH (2001) How can immunology contribute to the control of tuberculosis? Nature Rev Immunol 1: 20–30CrossRefGoogle Scholar
  25. 25.
    Kaufmann SH, Schaible UE (2003) A dangerous liaison between two major killers: Mycobacterium tuberculosis and HIV target dendritic cells through DC-SIGN. J Exp Med 197: 1–5CrossRefPubMedGoogle Scholar
  26. 26.
    Keane J, Gershon S, Wise RP et al. (2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345: 1098–1104PubMedGoogle Scholar
  27. 27.
    Le Cabec V, Cols C, Maridonneau-Parini I (2000) Nonopsonic phagocytosis of zymosan and Mycobacterium kansasii by CR3 (CD11b/CD18) involves distinct molecular determinants and is or is not coupled with NADPH oxidase activation. Infect Immun 68: 4736–4745CrossRefPubMedGoogle Scholar
  28. 28.
    Losana G, Rigamonti L, Borghi I et al. (2002) Requirement for both IL-12 and IFN-gamma signaling pathways in optimal IFN-gamma production by human T cells. Eur J Immunol 32: 693–700CrossRefPubMedGoogle Scholar
  29. 29.
    MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15: 323–350CrossRefPubMedGoogle Scholar
  30. 30.
    Maini R, St Clair EW, Breedveld F (1999) Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 354: 1932–1939PubMedGoogle Scholar
  31. 31.
    Means TK, Lien E, Yoshimura A, Wang S, Golenbock DT, Fenton MJ (1999) The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol 163: 6748–6755PubMedGoogle Scholar
  32. 32.
    Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ (1999) Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 163: 3920–3927PubMedGoogle Scholar
  33. 33.
    Morita CT, Mariuzza RA, Brenner MB (2000) Antigen recognition by human gamma delta T cells: pattern recognition by the adaptive immune system. Springer Semin Immunopathol 22: 191–217CrossRefPubMedGoogle Scholar
  34. 34.
    Ogawa T, Uchida H, Kusumoto Y, Mori Y, Yamamura Y, Hamada S (1991) Increase in tumor necrosis factor alpha- and interleukin-6-secreting cells in peripheral blood mononuclear cells from subjects infected with Mycobacterium tuberculosis. Infect Immun 59: 3021–3025PubMedGoogle Scholar
  35. 35.
    Porcelli SA, Modlin RL (1999) The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol 17: 297–329CrossRefPubMedGoogle Scholar
  36. 36.
    Romeyn JA (1970) Exogenous reinfection in tuberculosis. Am Rev Respir Dis 101: 923–927PubMedGoogle Scholar
  37. 37.
    Scanga CA, Mohan VP, Yu K et al. (2000) Depletion of CD4(+) T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase 2. J Exp Med 192: 347–358CrossRefPubMedGoogle Scholar
  38. 37a.
    Schaible UE, Winau F, Sieling PA, Fischer K, Collins HL, Hagens K, Modlin RL, Brinkmann V, Kaufmann SH (2003) Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat Med 9: 1039–1046CrossRefPubMedGoogle Scholar
  39. 38.
    Shen Y, Zhou D, Qiu L et al. (2002) Adaptive immune response of Vgamma2Vdelta2+ T cells during mycobacterial infections. Science 295: 2255–2258CrossRefPubMedGoogle Scholar
  40. 39.
    Shiloh MU, Nathan CF (2000) Reactive nitrogen intermediates and the pathogenesis of Salmonella and mycobacteria. Curr Opin Microbiol 3: 35–42CrossRefPubMedGoogle Scholar
  41. 40.
    Stead WW (1967) Pathogenesis of a first episode of chronic pulmonary tuberculosis in man: recrudescence of residuals of the primary infection or exogenous reinfection? Am Rev Respir Dis 95: 729–745PubMedGoogle Scholar
  42. 41.
    Stenger S, Mazzaccaro RJ, Uyemura K et al. (1997) Differential effects of cytolytic T cell subsets on intracellular infection. Science 276: 1684–1687Google Scholar
  43. 42.
    Stenger S, Niazi KR, Modlin RL (1998) Down-regulation of CD1 on antigen-presenting cells by infection with Mycobacterium tuberculosis. J Immunol 161: 3582–3588PubMedGoogle Scholar
  44. 43.
    Tailleux L, Schwartz O, Herrmann JL et al. (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197: 121–127CrossRefPubMedGoogle Scholar
  45. 44.
    Takeshita F, Leifer CA, Gursel I et al. (2001) Cutting edge: Role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol 167: 3555–3558PubMedGoogle Scholar
  46. 45.
    Ulrichs T, Kaufmann SH (2002) Mycobacterial persistence and immunity. Front Biosci 7: D458–D469PubMedGoogle Scholar
  47. 46.
    Ulrichs T, Porcelli S (2000) CD1 proteins: targets of T cell recognition in innate and adaptive immunity. Rev Immunogenet 2: 416–432PubMedGoogle Scholar
  48. 47.
    van Pinxteren LA, Cassidy JP, Smedegaard BH, Agger EM, Andersen P (2000) Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur J Immunol 30: 3689–3698CrossRefPubMedGoogle Scholar
  49. 48.
    van Rie A, Warren R, Richardson M et al. (1999) Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. N Engl J Med 341: 1174–1179CrossRefPubMedGoogle Scholar
  50. 49.
    Warmington KS, Boring L, Ruth JH et al. (1999) Effect of C-C chemokine receptor 2 (CCR2) knockout on type-2 (schistosomal antigen-elicited) pulmonary granuloma formation: analysis of cellular recruitment and cytokine responses. Am J Pathol 154: 1407–1416PubMedGoogle Scholar
  51. 50.
  52. 51.
    Young S, O'Donnell M, Lockhart E et al. (2002) Manipulation of immune responses to Mycobacterium bovis by vaccination with IL-2- and IL-18-secreting recombinant bacillus Calmette Guerin. Immunol Cell Biol 80: 209–215CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Max-Planck-Institut für InfektionsbiologieBerlin
  2. 2.Max-Planck-Institut für InfektionsbiologieBerlin
  3. 3.Institut für InfektionsmedizinCampus Benjamin Franklin, Charité Universitätsmedizin BerlinBerlin

Personalised recommendations