Advertisement

Der Internist

, Volume 44, Issue 7, pp 889–895 | Cite as

Zur Häufigkeit und Vermeidbarkeit von tödlichen unerwünschten Arzneimittelwirkungen

  • J. U. Schnurrer
  • J. C. Frölich
Arzneimitteltherapie

Zusammenfassung

Etwa jede zweite ärztliche Entscheidung betrifft die Arzneitherapie. Auf der Basis einer repräsentativen norwegischen Studie, die die Todesfälle durch Arzneimittel bei stationären internistischen Patienten mit Hilfe von Autopsien und Arzneimittelkonzentrationsmessungen erfasste, muss mit 58 000 Todesfällen allein im stationären internistischen Bereich in Deutschland gerechnet werden, von denen nur etwa 6% von den behandelnden Ärzten als solche klassifiziert wurden. Die mit der Arzneitherapie einhergehenden Risiken werden offenbar erheblich unterschätzt. In der Hälfte der Fälle handelt es sich um Medikationsfehler, die potenziell alle vermeidbar wären. Neben einer verbesserten klinisch-pharmakologischen Aus- und Fortbildung wäre der Einsatz klinisch-pharmakologischer Expertensysteme zur Therapieoptimierung ein entscheidender Schritt, um die derzeitige Situation zu verbessern.

Schlüsselwörter

Arzneimittel Unerwünschte Arzneimittelwirkungen Nebenwirkungen Verordnungsfehler Todesfälle 

Abstract

About every second decision of a medical doctor concerns drug therapy. On the basis of a representative Norwegian study, which analyzed fatal drug reactions in stationary patients of internal medicine wards by autopsy and plasma drug concentrations, in Germany 58 000 fatalities are occurring in this patient population. The treating physicians classified only 6% of drug induced fatalities as such. Therefore, the risk of drug therapy is grossly underestimated. In half of the cases medication errors were causative and therefore these could potentially all be avoided. In addition to improved pre- and postgraduate education in clinical pharmacology the use of computer-based expert systems would be a decisive step to optimize drug therapy.

Keywords

Pharmaceutical agents Undesirable drug effects Side effects Prescription errors Fatal casualties 

Literatur

  1. 1.
    World Health Organisation (1969) International drug monitoring. The role of hospital. Technical Report Series No. 425Google Scholar
  2. 2.
    World Health Organisation (1972) International drug monitoring. The role of national centres. Technical Report Series No. 498Google Scholar
  3. 3.
    Bates DW et al. (1995) Incidence of adverse drug events and potential adverse drug events. Implications for prevention. JAMA 274: 29–34PubMedGoogle Scholar
  4. 4.
    van den Bemt PM et al. (2000) Drug-related problems in hospitalised patients. Drug Saf 22: 321–333PubMedGoogle Scholar
  5. 5.
    Jha AK et al. (1998) Identifying adverse drug events: development of a computer-based monitor and comparison with chart review and stimulated voluntary report. J Am Med Inform Assoc 5: 305–314PubMedGoogle Scholar
  6. 6.
    Bates DW et al. (1997) The costs of adverse drug events in hospitalized patients. JAMA 277: 307–311PubMedGoogle Scholar
  7. 7.
    Bates DW, Leape LL, Petrycki S (1993) Incidence and preventability of adverse drug events in hospitalized adults. J Gen Intern Med 8: 289–294PubMedGoogle Scholar
  8. 8.
    Easton KL et al. (1998) The incidence of drug-related problems as a cause of hospital admissions in children. Med J Aust 169: 356–359PubMedGoogle Scholar
  9. 9.
    Lakshmanan MC, Hershey CO, Breslau D (1986) Hospital admissions caused by iatrogenic disease. Arch Intern Med 146: 1931–1934CrossRefPubMedGoogle Scholar
  10. 10.
    Dartnell JG et al. (1996) Hospitalisation for adverse events related to drug therapy: incidence, avoidability and costs. Med J Aust 164: 659–662PubMedGoogle Scholar
  11. 11.
    Bero LA, Lipton HL, Bird JA (1991) Characterization of geriatric drug-related hospital readmissions. Med Care 29: 989–1003PubMedGoogle Scholar
  12. 12.
    Classen DC et al. (1997) Adverse drug events in hospitalized patients. Excess length of stay, extra costs, and attributable mortality. JAMA 277: 301–306PubMedGoogle Scholar
  13. 13.
    Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279: 1200–1205PubMedGoogle Scholar
  14. 14.
    Wille H, Schönhöfer PS (2002) Arzneimittelsicherheit und Nachkontrolle. Internist 43: 469–481CrossRefPubMedGoogle Scholar
  15. 15.
    Caranasos GJ, Stewart RB, Cluff LE (1974) Drug-induced illness leading to hospitalization. JAMA 228: 713–717CrossRefPubMedGoogle Scholar
  16. 16.
    Miller RR (1973) Drug surveillance utilizing epidemiologic methods. A report from the Boston Collaborative Drug Surveillance Program. Am J Hosp Pharm 30: 584–592PubMedGoogle Scholar
  17. 17.
    Bates DW et al. (1995) Relationship between medication errors and adverse drug events. J Gen Intern Med 10: 199–205PubMedGoogle Scholar
  18. 18.
    Mitchell AA et al. (1988) Adverse drug reactions in children leading to hospital admission. Pediatrics 82: 24–29PubMedGoogle Scholar
  19. 19.
    Ebbesen J et al. (2001) Drug-related deaths in a department of internal medicine. Arch Intern Med 161: 2317–2323CrossRefPubMedGoogle Scholar
  20. 20.
    Buajordet, I et al. (2001) Fatal adverse drug events: the paradox of drug treatment. J Intern Med 250: 327–341CrossRefPubMedGoogle Scholar
  21. 21.
    Arnold M, Litsch M, Schwartz FW (1999) Krankenhaus-Report '99. Schattauer, Stuttgart New YorkGoogle Scholar
  22. 22.
    Schönhöfer PS (1999) Klinik-basierte Erfassung Arzneimittel-bedingter Erkrankungen im Pharmakovigilanz-System (ZKH Bremen). Arzneimitteltherapie 17: 83–86Google Scholar
  23. 23.
    Leape LL et al. (1995) Systems analysis of adverse drug events. ADE Prevention Study Group. JAMA 274: 35–43PubMedGoogle Scholar
  24. 24.
    Bates DW (1999) Frequency, consequences and prevention of adverse drug events. J Qual Clin Pract 19: 13–17CrossRefPubMedGoogle Scholar
  25. 25.
    Lesar TS, Briceland L, Stein DS (1997) Factors related to errors in medication prescribing. JAMA 277: 312–317PubMedGoogle Scholar
  26. 26.
    Lindquist R, Gersema LM (1998) Understanding and preventing adverse drug events. AACN Clin Issues 9: 119–128PubMedGoogle Scholar
  27. 27.
    Rolfe S, Harper NJ (1995) Ability of hospital doctors to calculate drug doses. BMJ 310: 1173–1174PubMedGoogle Scholar
  28. 28.
    Frölich JC, Kirch W (2000) Praktische Arzneitherapie, 2. Aufl. Springer, Berlin Heidelberg New YorkGoogle Scholar
  29. 29.
    Mutschler E et al. (2001) Arzneimittelwirkungen, 8. Aufl. Wiss.-Verlagsges., StuttgartGoogle Scholar
  30. 30.
    Wrenger E et al. (2003) Lesson of the week—Interaction of spironolactone with ACE inhibitors or angiotensin receptor blockers causing life threatening hyperkaliämia: analysis of 43 cases. BMJ (in press)Google Scholar
  31. 31.
    Kohn LT, Corrigan JM, Donaldson MS (1999) To err is human. Committee on Quality Health Care in America, Institute of Medicine. National Academy Press, WashingtonGoogle Scholar
  32. 32.
    Frölich JC (2001) Die Hälfte aller Arzneinebenwirkungen wäre vermeidbar! med-online: 3Google Scholar
  33. 33.
    Troost R et al. (1999) Arzneimittelinformation—eine Aufgabe der Klinischen Pharmakologie. Niedersächs Ärztebl: 16–18Google Scholar
  34. 34.
    Lumpe M et al. (1998) Individualisierte Arzneimittelinformation. Dtsch Ärztebl 95: 3053–3056Google Scholar
  35. 35.
    Bates DW et al. (1998) Effect of computerized physician order entry and a team intervention on prevention of serious medication errors. JAMA 280: 1311–1316PubMedGoogle Scholar
  36. 36.
    Teich JM et al. (2000) Effects of computerized physician order entry on prescribing practices. Arch Intern Med 160: 2741–2747CrossRefPubMedGoogle Scholar
  37. 37.
    Overhage JM et al. (1997) A randomized trial of "corollary orders" to prevent errors of omission. J Am Med Inform Assoc 4: 364–375PubMedGoogle Scholar
  38. 38.
    Bates DW et al. (1999) The impact of computerized physician order entry on medication error prevention. J Am Med Inform Assoc 6: 313–321PubMedGoogle Scholar
  39. 39.
    Bates DW (2000) Using information technology to reduce rates of medication errors in hospitals. BMJ 320: 788–791CrossRefPubMedGoogle Scholar
  40. 40.
    Atkinson AJ, Nordstrom K (1996) The challenge of in-hospital medication use: an opportunity for clinical pharmacology. Clin Pharmacol Ther 60: 363–367PubMedGoogle Scholar
  41. 41.
    Chertow GM et al. (2001) Guided medication dosing for inpatients with renal insufficiency. JAMA 286: 2839–2844CrossRefPubMedGoogle Scholar
  42. 42.
    Nightingale PG et al. (2000) Implementation of rules based computerised bedside prescribing and administration: intervention study. BMJ 320: 750–753CrossRefPubMedGoogle Scholar
  43. 43.
    Hunt DL et al. (1998) Effects of computer-based clinical decision support systems on physician performance and outcomes: a systematic review. JAMA 280: 1339–1346CrossRefPubMedGoogle Scholar
  44. 44.
    Walton RT et al. (2001) Computerised advice on drug dosage to improve prescribing practice (Cochrane Review). Cochrane Library, OxfordGoogle Scholar
  45. 45.
    Evans RS et al. (1994) Improving empiric antibiotic selection using computer decision support. Arch Intern Med 154: 878–884CrossRefPubMedGoogle Scholar
  46. 46.
    Evans RS et al. (1998) A computer-assisted management program for antibiotics and other antiinfective agents. N Engl J Med 338: 232–238PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Institut für Klinische PharmakologieMedizinische Hochschule Hannover
  2. 2.Apotheke der Krankenhäuser der Region HannoverLaatzen
  3. 3.Institut für Klinische PharmakologieMedizinische Hochschule HannoverHannover

Personalised recommendations