Advertisement

Effect of increasing core layer particle thickness on lightweight particleboard properties

  • Jan T. BenthienEmail author
  • Jan Lüdtke
  • Martin Ohlmeyer
Original
  • 43 Downloads

Abstract

To reduce the raw material content in particleboards, the influence of core layer particle geometry on panel properties was compared for lightweight particleboards (500 kg/m3) and conventional panels (650 kg/m3). Specifically, the bending strength and modulus of elasticity, internal bond strength, thickness swelling, water absorption, and density distribution perpendicular to the plane direction were evaluated. Industrial core layer reference particles were obtained and compared to laboratory-made particles by varying the cutting blade projection of the knife ring flaker during chipping. The particles were then classified as Thin, Normal, or Thick after assessment by manual gauging. Additionally, sieve analysis and image analysis were applied for particle size or particle dimension measurement. Based on particle surface calculations (in square metres per mass of dry particles) and the mass of solid adhesive in relation to the mass of dry wood, the surface-specific adhesive amount was calculated. As the cutting blade projection during particle preparation determines the particle dimensions, it also controls the surface-specific amount of adhesive. With increasing particle thickness, the internal bond strength for both conventional and lightweight panels also increased. Normal particles showed the best mechanical results, whereas other correlations between mechanical properties and particle thickness were insignificant. Moreover, most laboratory-made particle variations outperformed the industrial reference. Thickness swelling of the lightweight panels, particularly after 24 h, was either equal to or less than that of conventional panels. The density profile was predominantly unaffected by the core layer particle thickness. Overall, these results suggest that the core layer particle thickness and the thickness-related changes of adhesive coverage of the core layer particles have only little effect on the key physical and mechanical properties of lightweight panels. In practical application, an increase in core layer particle thickness seems to be unable to maintain bending properties in wood-reduced particleboards on the same level as in conventional density particleboards.

Notes

Acknowledgements

The authors thank the Federal Ministry of Food and Agriculture (Berlin, Germany) for its financial support. We also thank research and industry partners for their involvement in the project ‘LeiHoWe’ (FNR FKZ 22005613), in particular Prof. Dr. Joachim Hasch (Swiss Krono Group, Luzern, Switzerland) and Mr. Maik Hirschberg (Swiss Krono, Zary, Poland) for the supply of material and Dr. Helmut Roll (Pallmann Maschinenfabrik, Zweibrücken, Germany) for performing works. Special thanks go to those who performed experiments and data analysis, namely Mrs. Dörte Bielenberg, Mrs. Birgit Butenschön, Mr. Nick Engehausen, Mrs. Sabrina Heldner, Mr. Hannes Köhm, and Mrs. Bettina Steffen (all Thünen Institute of Wood Research, Hamburg, Germany).

References

  1. Benthien JT, Ohlmeyer M (2017) Influence of face-to-core layer ratio and core layer resin content on the properties of density-decreased particleboards. Eur J Wood Prod 75(1):55–62.  https://doi.org/10.1007/s00107-016-1059-5 CrossRefGoogle Scholar
  2. Benthien JT, Bähnisch C, Heldner S, Ohlmeyer M (2014) Effect of fiber size distribution on medium-density fiberboard properties caused by varied steaming time and temperature of defibration process. Wood Fiber Sci 46(2):175–185Google Scholar
  3. Benthien JT, Schneider M, Stehle T, Ohlmeyer M (2018) Experimental determination of the compression resistance of differently shaped wood particles as influencing parameter on wood-reduced particleboard manufacturing. Eur J Wood Prod 76(3):937–945.  https://doi.org/10.1007/s00107-017-1270-z CrossRefGoogle Scholar
  4. DIN 66165-1 (2016) Partikelgrößenanalyse—Siebanalyse—Teil 1: Grundlagen [Particle size analysis—Sieving analysis—Part 1: fundamentals], DIN German Institute for StandardizationGoogle Scholar
  5. DIN 66165-2 (2016) Partikelgrößenanalyse—Siebanalyse—Teil 2: Durchführung [Particle size analysis—Sieving analysis—Part 2: procedure]. DIN German Institute for StandardizationGoogle Scholar
  6. DIN EN 310 (1993) Holzwerkstoffe; Bestimmung des Biege-Elastizitätsmoduls und der Biegefestigkeit; Deutsche Fassung EN 310:1993 [Wood-based panels; determination of modulus of elasticity in bending and of bending strength; German version EN 310:1993], DIN German Institute for StandardizationGoogle Scholar
  7. DIN EN 317 (1993) Spanplatten und Faserplatten; Bestimmung der Dickenquellung nach Wasserlagerung; Deutsche Fassung EN 317:1993 [Particleboards and fibreboards; determination of swelling in thickness after immersion in water; German version EN 317:1993], DIN German Institute for StandardizationGoogle Scholar
  8. DIN EN 319 (1993) Spanplatten und Faserplatten; Bestimmung der Zugfestigkeit senkrecht zur Plattenebene; Deutsche Fassung EN 319:1993 [Particleboards and fibreboards; determination of tensile strength perpendicular to the plane of the board; German version EN 319:1993], DIN German Institute for StandardizationGoogle Scholar
  9. DIN EN 322 (1993) Holzwerkstoffe; Bestimmung des Feuchtegehaltes; Deutsche Fassung EN 322:1993 [Wood-based panels; determination of moisture content; German version EN 322:1993], DIN German Institute for StandardizationGoogle Scholar
  10. DIN EN 323 (1993) Holzwerkstoffe; Bestimmung der Rohdichte; Deutsche Fassung EN 323:1993 [Wood-based panels; determination of density; German version EN 323:1993], DIN German Institute for StandardizationGoogle Scholar
  11. DIN ISO 9276-1 (2004) Darstellung der Ergebnisse von Partikelgrößenanalysen—Teil 1: Grafische Darstellung (ISO 9276-1:1998) [Representation of results of particle size analysis—part 1: Graphical representation (ISO 9276-1:1998)]. DIN German Institute for StandardizationGoogle Scholar
  12. Dunky M (1988) Einfluß der Spangrößenverteilung auf den Beleimungsgrad der Späne [Influence of the particle size distribution on the particles’ resin content]. Holzforsch Holzverw 40:126–133Google Scholar
  13. Dunky M (1998) Particleboard size distribution and glue resin consumption: how to spare costs. In: Hague, M, Griffiths, J, Snell, T (eds) Proceedings of the second European panel products symposium, 21.–22. October 1998, Llandudno, Wales, UK, pp 206–217Google Scholar
  14. Dunky M, Niemz P (2002) Holzwerkstoffe und Leime—Technologie und Einflussfaktoren [Wood-based panels and adhesives—technology and influencing factors]. Springer-Verlag, Berlin/Heidelberg (in German) Google Scholar
  15. EPF European Panel Federation (2017) Annual Report 2016–2017. BrusselsGoogle Scholar
  16. Hänsel A, Niemz P, Wagenführ R (1988) Beziehung zwischen Struktur und Eigenschaften von Vollholz und Holzwerkstoffen. Teil 3 [Relationship between structure and properties of wood and wood-based panels Part 3]. Holztechnologie 29(3):125–130 (in German) Google Scholar
  17. Hasch J (2017) Innovationen in der HWS-Industrie [Innovations in wood-based panel industry]. 5. Grecon Holzwerkstoffsymposium. Bad Homburg, Germany, 20. October 2017 (in German) Google Scholar
  18. Irle M, Barbu MC (2010) Wood-based panel technology. In: Thoemen H, Irle M, Sernek M (eds) Wood-based panels—an introduction for specialists. Brunel University Press, London, pp 1–94Google Scholar
  19. ISO 13322-1 (2014) Particle size analysis—Image analysis methods—part 1: Static image analysis methods. ISO International Organization for StandardizationGoogle Scholar
  20. ISO 13322-2 (2006) Particle size analysis—image analysis methods—Part 1: dynamic image analysis methods. ISO International Organization for StandardizationGoogle Scholar
  21. Kollmann F (1966) Holzwerkstoffe—Holzspanplatten und Holzspanformlinge Rohstoffe, Herstellung, Plankosten Qualitätskontrolle usw. [Wood-based panels—Particleboards and wood particle castings, raw materials, manufacturing, target costs, quality control etc]. Springer-Verlag, Berlin/Heidelberg/New York (in German) Google Scholar
  22. Niemz P, Wenk S (1989) Kenngrößen zur Beurteilung von Spangemischen und deren Meßbarkeit [Characteristic values for the evaluation of wood particle mixtures and their measurability]. Holztechnologie 30(3):117–122 (in German) Google Scholar
  23. Niemz P, Wagenführ R, Hänsel A (1988) Beziehung zwischen Struktur und Eigenschaften von Vollholz und Holzwerkstoffen: Teil 1 [Relationship between structure and properties of wood and wood-based panels: part 1]. Holztechnologie 29(1):7–11 (in German) Google Scholar
  24. Plough IL (1974) The effect of running clearance on flake quality and power requirements of conical knife-ring flakers. In: Proceedings of Eighth Washington State University Symposium on Particleboard. Pullman, USA, March 1974, pp 287–300Google Scholar
  25. Seppke B, Bähnisch C, Benthien JT, Heldner S, Ohlmeyer M (2015) A concurrent skeleton-based approach for the characterization of wood fibers with sub-pixel precision for fiber board production. In: International conference on mass data analysis of images and signals (MDA). Hamburg, Germany, 11.–24. July 2015Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jan T. Benthien
    • 1
    Email author
  • Jan Lüdtke
    • 1
  • Martin Ohlmeyer
    • 1
  1. 1.Thünen Institute of Wood ResearchHamburgGermany

Personalised recommendations