Advertisement

Influence of thermo-mechanical and chemo-thermo-mechanical pulping on the properties of oak fibres

  • T. Schneider
  • C. Behn
  • E. Windeisen-Holzhauser
  • E. RoffaelEmail author
Original
  • 57 Downloads

Abstract

Thermo-mechanical pulps (TMP) and chemo-thermo-mechanical pulps (CTMP) were prepared from chips of oak wood with more than 70% heartwood. The fibres retrieved by both processes were separated by sieve analysis into different fibre fractions [≤ 0.1 mm (fine fraction) and > 1 mm (coarse fraction)]. Both fibre fractions were analysed for their extract content. The pH-value and buffering capacity of cold and hot water extracts, the formaldehyde release as well as the emission of volatile organic acids (formic and acetic acid) were also determined for the different fibre fractions. Further, the monosaccharides in the extractives before and after hydrolysis using trifluoroacetic acid (TFA) were assessed. The results make abundantly clear that the fine fraction (≤ 0.1 mm) contains a higher amount of water-soluble extracts than the coarse fraction (> 1 mm). After hydrolysis with TFA the amount of monosaccharides in the extractives, in particular the xylose content, increased tremendously, indicating that after pulping a part of the liberated carbohydrates is still in the oligomeric state. With increasing fineness of the fibres, the formaldehyde release, as determined by the flask method (EN 717-3), soars to higher values. The formaldehyde release of CTMP fibres was much lower than that of the TMP fibres. In contrast, the emission of acetic and formic acid from the CTMP was much higher than that from TMP. This may be due to the saponification of acetyl groups in the hemicelluloses of oak wood under the alkaline environment of the CTMP-process. The results explain in-depth why removing the water-soluble carbohydrates through washing the fibres negatively impacts their bondability by UF-resins, as established in previous publications.

Notes

Acknowledgements

The research work was funded by the German Federal Ministry of Food and Agriculture (Bundesministerium für Ernährung und Landwirtschaft (BMEL)) and managed by the Agency for Renewable Resources (Fachagentur Nachwachsende Rohstoffe e.V. (FNR)) (Project number FKZ 22015815). The authors thank for the financial support. Furthermore, thanks are due to Snezana Sajkas Sajdl and Claudia Strobel at Wood Research Munich for performing the chemical analyses.

References

  1. Blechschmidt J, Bloszfeld O, Bäurich C, Engert P, Graf M, Wurdinger S (1988) Eigenschaften von CTMP aus einheimischen Holzarten (Teil II) (Characteristics of CTMP from local wood (Part II)). Zellstoff Papier 37(2):43–46 (in German) Google Scholar
  2. Blechschmidt J, Wurdinger S, Graf M, Engert P (1989) CTMP aus einheimischen Holzarten (CTMP from local woods). Zellstoff Papier 38:43–46 (in German) Google Scholar
  3. Dix B (2011a) Einfluss der beim thermomechanischen Holzaufschluss entstehenden Abbauprodukte auf die Festigkeiten und Emissionen von mitteldichten Faserplatten (MDF), Teil 1: TMP und CTMP aus Kiefern- und Buchenholz (Influence of degradation products of thermo-mechanical pulping on the strength properties and emission of medium density fibreboards (MDF), Part 1: TMP and CTMP from pine and beech wood). Holztechnologie 52(5):22–27 (in German) Google Scholar
  4. Dix B (2011b) Einfluss der beim thermomechanischen Holzaufschluss entstehenden Abbauprodukte auf die Festigkeiten und Emissionen von mitteldichten Faserplatten (MDF), Teil 2: Mitteldichte Faserplatten. (Influence of degradation products of thermo-mechanical pulping on the strength properties and emission of medium density fibreboards (MDF), Part 2: medium density fibreboards). Holztechnologie 52(6):22–28 (in German) Google Scholar
  5. EN 717-3 (1996) Wood-based panels—determination of formaldehyde release—Part 3: formaldehyde release by the flask methodGoogle Scholar
  6. Fengel D, Wegener G (1984) Wood—chemistry, ultrastructure, reactions. Chapter 12, p 319, ISBN:3-11-008481-3Google Scholar
  7. Geissman TA (1944) The Cannizzaro reaction. Organic reactions (2). Wiley, New York, pp 94–113Google Scholar
  8. Goring DAI (1963) Thermal softening of lignin, hemicellulose and cellulose. Pulp paper magazine of Canada 64:89–118Google Scholar
  9. Hennecke U (2005) Beiträge zur Feuchtebeständigkeit und Hydrolyseresistenz von mitteldichten Faserplatten (Contributions to the moisture and hydrolysis resistance of medium density firbreboards). Dissertation University of Göttingen. Sierke-Verlag, ISBN 3-933893-37-2, p. 186 (in German) Google Scholar
  10. Konn J, Pranovich A, Holmbom B (2006) Dissolution of fibre material in alkaline pre-treatment and refining of spruce CTMP. Holzforschung 60:32–39Google Scholar
  11. Pearson AJ (1990) A Unified Theory of Refining. In: Pulp and paper science and technology, prepared under the direction of the Joint Textbook Committee of the Paper Industry. ISBN:0-919893-79-1Google Scholar
  12. Puls J, Ayla C, Weigel J (1983) Verwertung von Hemicellulosen, Status Seminar “Bereitstellung und Verwertung von Lignocellulosen” (Utilization of hemicelluloses. Paper submitted to the seminar Procurement and utilization of lignocelluloses), KFA Jülich 21.-22.11.1983 (in German) Google Scholar
  13. Roffael E (1975) Messung der Formaldehydabgabe. Praxisnahe Methode zur Ermittlung der Formaldehydabgabe harnstoffharzgebundener Spanplatten für das Bauwesen. (Determination of the formaldehyde release. Practical method for measuring the formaldehyde release of UF-bonded particleboards in building). Holz-Zentralblatt 101:1403–1404 (in German) Google Scholar
  14. Roffael E, Dix B, Bär G, Bayer R (1994a) On the suitability of thermo-mechanical and chemo-thermo-mechanical pulps (TMP and CTMP) from beech and pine for the manufacture of medium density fibreboards. Part 1: pulping of wood and properties of the pulps. Holz Roh-Werkst 52:239–246 (in German) CrossRefGoogle Scholar
  15. Roffael E, Dix B, Bär G, Bayer R (1994b) On the suitability of thermo-mechanical and chemo-thermo-mechanical pulps (TMP and CTMP) from beech and pine for the manufacture of medium density fibreboards. Part 2: properties of medium density fibreboards from beech pulps. Holz Roh-Werkst 52:293–298 (in German) CrossRefGoogle Scholar
  16. Roffael E, Dix B, Bär G, Bayer R (1995) On the suitability of thermo-mechanical and chemo-thermo-mechanical pulps (TMP and CTMP) from beech and pine for the manufacture of medium density fibreboards. Part 3: properties of MDF from pine wood. Holz Roh- Werkst 53(1):8–11 (in German) CrossRefGoogle Scholar
  17. Roffael E, Schütze S, Behn C, Krug D, Lilie B (2013) Eiche als Rohstoff für mitteldichte Faserplatten (MDF). (Oak as raw material in medium density fibreboards (MDF)). Forstarchiv 84:65–70 (in German) Google Scholar
  18. Schäfer M, Roffael E (1999) Influence of wood extractives in spruce and pine on the formaldehyde release. Holz Roh- Werkst 57:340 (in German) CrossRefGoogle Scholar
  19. Schäfer M, Roffael E (2000) On the formaldehyde release of wood. Holz Roh- Werkst 58:259–264CrossRefGoogle Scholar
  20. Schneider T (1999) Untersuchungen über den Einfluss von Aufschlussbedingungen des Holzes und der Faserstofftrocknung auf die Eigenschaften von mitteldichten Faserplatten. (Investigation into the influence of pulping conditions of wood and fibre drying on the properties of MDF). Dissertation University of Göttingen, Shaker Verlag, Aachen, ISBN:3-8265-7201-7 (in German) Google Scholar
  21. Stockmann L (1963) Kurzfaserige Rohstoffe in der Zellstoff- und Papierindustrie (Short fibre raw materials in the pulp and paper industry). Das Papier 17(10A):578–584 (in German) Google Scholar
  22. Tyrvåinen J (1995) Wood and fiber properties of Norway spruce and its suitability for thermomechanical pulping. Society of Forest Science—Finnish Forest Research Institute, Tampere, Acta Forestalia Fennica 249Google Scholar
  23. Wagenführ R, Scheiber C (1985) Holzatlas (Wood atlas). 2. Edition. Fachbuchverlag Leipzig, p 438 (in German) Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • T. Schneider
    • 1
  • C. Behn
    • 1
  • E. Windeisen-Holzhauser
    • 2
  • E. Roffael
    • 3
    Email author
  1. 1.Section Molecular Wood Biotechnology and Technical MycologyUniversity of GöttingenGöttingenGermany
  2. 2.Technical University of Munich (TUM), Wood Research Munich (HFM)MunichGermany
  3. 3.University of GöttingenGöttingenGermany

Personalised recommendations