European Journal of Wood and Wood Products

, Volume 75, Issue 2, pp 215–232 | Cite as

Investigation of the interrelations between defibration conditions, fiber size and medium-density fiberboard (MDF) properties

  • Jan T. Benthien
  • Sabrina Heldner
  • Martin Ohlmeyer


Defibration conditions and raw material properties affect wood fiber characteristics, and thereby the properties of fiber-based panels such as high-density fiberboard (HDF), medium-density fiberboard (MDF) and wood fiber insulation board. This study investigates the influence of steaming conditions (time and temperature), grinding disc distance, wood species (pine, beech, birch and poplar), method of refiner discharging (radial and tangential stock outlet) and wood chip size on fiber length and fiber length distribution, and further the influence of fiber size on MDF properties. Fiber lengths were determined applying the recently developed image analysis-based fiber size measuring system FibreCube. This system enables an automated and nearly complete mechanical separation of woolly-felted fiber samples prior to image acquisition, software-supported post-separation of overlapped-lying fibers at the beginning of image analysis, and flow line tracing-based length measurement. It was found that grinding disc distance and wood species are the most influential parameters on fiber length characteristics. Especially the content of undefibrated fiber bundles (shives) was found to strongly correlate with the grinding disc distance. Wood anatomical differences between hardwood and softwood were reflected clearly by the fiber length characteristics. Fiber size was found to be one of the parameters influencing panel properties. However, other fiber characteristics—in particular the chemical nature of the fiber, which is responsible for its wettability with water (thickness swelling) and glue (mechanical properties)—have to be considered as important influencing parameters on panel properties.



The authors would like to thank Mr. Christian Lanvermann, Eidgenössische Technische Hochschule Zürich (ETH), Institute for Building Materials, Wood Physics, Zurich, Switzerland, for programming the basis of the MatLab routine and Mr. Reiner Ohrnberger and Florian Lösch (both Norske Skog Walsum GmbH, Duisburg-Walsum, Germany) for the characterization of the wood chips. The financial support of Fachagentur Nachwachsende Rohstoffe e.V. (FNR) on behalf of the Federal Ministry of Food and Agriculture (BMEL) is gratefully acknowledged.


  1. Asplund A (1939) Defibratormetoden och dess användningsområden. The defibrator method and its field of application. Teknisk Tidskrift 69(Kemi): 81–85 and 89–94Google Scholar
  2. Benthien JT, Hasener J, Pieper O, Tackmann O, Bähnisch C, Heldner S, Ohlmeyer M (2013) Determination of MDF fiber size distribution: requirements and innovative solution. In Proc of the International Wood Composites Symposium 3.-4. April 2013, Seattle, Washington (WA), USAGoogle Scholar
  3. Benthien JT, Heldner S, Ohlmeyer M (2014a) The characterization of TMP fibres in MDF. Wood Based Panels Int 1:26–27Google Scholar
  4. Benthien JT, Wallot G, Seppke B, Heldner S, Gusovius HJ, Ohlmeyer M (2014b) Image based characterization of natural fibers: a comparison of measuring systems. Poster presentation at 10th International Symposium “Materials made of Renewable Resources” (, 16–17 September, Erfurt, GermanyGoogle Scholar
  5. Benthien JT, Bähnisch C, Heldner S, Ohlmeyer M (2014c) Effects of fiber size distribution on medium-density fiberboard properties caused by varied steaming time and temperature of defibration process. Wood Fiber Sci 46(2):175–185Google Scholar
  6. Deppe HJ, Ernst K (1996) MDF—Mitteldichte Faserplatte (MDF—Medium density fiberboards) (In German). DRW-Verlag Weinbrenner GmbH & Co., Leinfelder-EchterdingenGoogle Scholar
  7. Döry L (2012) European Panel Markets and challenges for the industry. In Proc. of the 8th European Wood-Based Panels Symposium 10–12. October 2012, Hanover, GermanyGoogle Scholar
  8. Esteves BM, Pereira HM (2009) Wood modification by heat treatment: a review. Bioresources 4(1):370–404Google Scholar
  9. FAO (2010) FAO Yearbook of Forest Products 2010. Food and Agriculture Organization, Rome, Italy, 2012, p 327Google Scholar
  10. Funk S (2013) Online Analyse der Fasereigenschaften in der MDF Produktion zur Optimierung der Prozessstabilität und Energieeffizienz. [Online analysis of the fiber properties in the MDF production to optimize the process stability and energy efficiency]. Master thesis Hamburg University, Hamburg, GermanyGoogle Scholar
  11. Gran G, Bystedt I (1973) Latest developments in pressurized-refining with Defibrator equipment. Proc of the 7th W.S.U. Symp. Particleboard, Pullman, USAGoogle Scholar
  12. Groom LH, Mott L, Shaler SM, Pesacreta T (1997) Effect of fiber surface and mechanical properties on the stiffness and strength of medium-density fiberboard. Proceedings of the International Association of Wood Anatomists/International Union of Forestry Research Organizations, November 1997. Westport, New Zealand, pp 375–387Google Scholar
  13. Groom L, Mott L, Shaler S (1999) Relationship between fiber furnish properties and structural performance of MDF. 33rd International Particleboard/Composite Material Symposium 1999, 13-15 April 1999, Pullman, Washington, USAGoogle Scholar
  14. Groom L, Rials T, Snell R (2000) Effects of varying refiner pressure on the mechanical properties of loblolly pine fibres. 4th European Panel Products Symposium 2000, 11–13 October 2000, Llandudno, North Wales, UKGoogle Scholar
  15. Groom L, So C, Rials T,Alexander J, Neese J (2001) The structural performance of MDF: raw materials, refiner pressure, and resin formulation effects. 5th European Panel Products Symposium 2001, 10–12, October 2000, Llandudno, North Wales, UKGoogle Scholar
  16. Groom L, So CL, Rials T, Neese J, Alexander J (2002) Relationships between wood quality, refiner pressure, and resin distribution and their influence on MDF panel properties. 6th European Panel Products Symposium 2002, 9.-11. October 2002, Llandudno, North Wales, UKGoogle Scholar
  17. Hasener J (2013a) Inline Fasercharakterisierung—Traum oder Realität. [Inline fiber characterization—dream or reality]. In Proc of the 4. Innovationsworkshop Holzwerkstoffe, Köln, Germany, 14. Mai 2013Google Scholar
  18. Hasener J (2013b) Inline Fasercharakterisierung, kein Traum sondern Realität—erste Praxiserfahrungen. Inline fiber characterization, no a dream but reality—first practical experiences. In: Proc. of the 3rd GreCon-Holzwerkstoffsymposium 2013, Magdeburg, Germany, 19–20, September 2013Google Scholar
  19. Ibrahim Z, Aziz AA, Ramli R, Mokhtar A, Lee SJ (2013) Effect of refining parameters on medium-density fibreboard (MDF) properties from oil palm trunk (Elaeis guineensis). Open J Compos Mater 3:127–131CrossRefGoogle Scholar
  20. Jensen U, Seltmann J (1969) Untersuchungen zur trockenen Fraktionierung von Holzfaserstoffen. (Investigations on the dry fractionation of wood fiber materials). Holztechnologie 10(1):29–32Google Scholar
  21. Kehr E (1977) Verfahren zur Herstellung von Faserplatten mittlerer Dichte, MdF. (Methods for the manufacture of fiberboards of medium-density, MDF).Holztechnologie 18:67–76Google Scholar
  22. Kehr E, Jensen U (1971) Verfahrenstechnologie Mitteldichte Faserplatte. Einfluß der Faserstoffqualität in Deck- und Mittelschicht. [Process technology medium-density fiberboard. Influence of fiber quality in face and core layer]. Unpublished R&D report, Institut für Holztechnologie, Dresden, GermanyGoogle Scholar
  23. Krug D (2010) Einfluss der Faserstoff-Aufschlussbedingungen und des Bindemittels auf die Eigenschaften von mitteldichten Faserplatten (MDF) für eine Verwendung im Feucht- und Außenbereich. (Influence of defibration conditions and binding agent on the properties of medium-density fiberboard (MDF) for moisture exposed and exterior application). Dissertation thesis, Hamburg University, Hamburg, Germany, p 293Google Scholar
  24. Krug D, Mäbert M (2008) Verwendung von Laubholz als Rohstoff-alternative zur MDF-Herstellung. [Application of hardwood as raw material alternative for MDF production]. Institut für Holztechnologie gGmbH (IHD). Dresden (IW050353)Google Scholar
  25. Lu JZ, Monlezun CJ, Wu Q, Cao QV (2007) Fitting weibull and lognormal distributions to medium-density fibreboard fiber and wood particle length. Wood Fib Sci 39(1):82–94Google Scholar
  26. Mäbert M (2009) Fibre characterization in the wood-based materials industry—theory and reality. PTS Pulp Symposium 24–25, November 2009Google Scholar
  27. Mäbert M, Krug D (2009) Tangential versus radial. MDF-Magazin 2009, pp 64–67, DRW-Verlag Weinbrenner GmbH & Co., Leinfelder-Echterdingen, GermanyGoogle Scholar
  28. Micko MM, Yanchuk AD, Wang EIC, Taylor FW (1982) Computerised measurement of fibre length. IAWA Bull 3(2):111–113CrossRefGoogle Scholar
  29. Myers GC (1983) Relationship of fiber preparation and characteristics to performance of medium-density hardboards. For Prod J 33(10):43–51Google Scholar
  30. Ohlmeyer M, Hasener J, Schmid H (2006) New methods to determine fibre quality for MDF-production. 10th European Panel Products Symposium (EPPS), 11–13, October 2006, Llandudno, Wales, UKGoogle Scholar
  31. Ohlmeyer M, Benthien JT, Heldner S, Seppke B (2014) FibreCube—an innovative approach to measure fibre size. 9th European Wood-based Panels Symposium (EWBPS) 08–10. October 2014, Hannover, GermanyGoogle Scholar
  32. Ohlmeyer M, Benthien JT, Heldner S, Seppke B (2015a) FibreCube How to Measure Fibre Size Distribution. InWood2015, 19–22, May 2015, Brno, Czech RepublicGoogle Scholar
  33. Ohlmeyer M, Benthien JT, Heldner S, Seppke B (2015b) Effects of Refining Parameters on Fibre Quality Measured by FibreCube. International Panel Products Symposium 2015, 7–8, October 2015, Llandudno, North Wales, UKGoogle Scholar
  34. Plinke B, Schirp A, Weidenmüller I (2012) Methoden der Holzpartikelgrößenmessung—Von der technologischen Fragestellung zur aussagekräftigen Statistik. (Methods of wood particle size measurement—from the technological question to a meaningful statistic). Holztechnologie 53(4):11–17Google Scholar
  35. Popp M (2013) Neue Möglichkeiten zur Analyse kreuzliegender Fasern mit FiVer. (New opportunities for the analysis of cross-wise overlapping fibers with FiVer). Arbeitskreis Faseranalytik 2013, 11. September 2013, Hannover, GermanyGoogle Scholar
  36. Quirk JT (1981) Semiautomated recording of wood cell dimensions. For Sci 27(2):336–338Google Scholar
  37. Roffael E, Dix B, Bär G, Bayer R (1994a) Über die Eignung von thermo-mechanischem und chemo-thermomechanischem Holzstoff (TMP und CTMP) aus Buchen- und Kiefernholz für die Herstellung von mitteldichten Faserplatten (MDF). Teil 1: Aufschluß des Holzes und Eigenschaften der Faserstoffe. (On the suitability of thermo-mechanical and chemo-thermo-mechanical pulps (TMP and CTMP) from beech and pine for the manufacture of medium density fibreboards Part 1: Pulping of wood and properties of the pulps) Holz Roh- Werkst 52:239–246Google Scholar
  38. Roffael E, Dix B, Bär G, Bayer R (1994b) Über die Eignung von thermo-mechanischem und chemo-thermomechanischem Holzstoff (TMP und CTMP) aus Buchen- und Kiefernholz für die Herstellung von mitteldichten Faserplatten (MDF). Teil 2: Eigenschaften von MDF aus Buchen-Faserstoff. (On the suitability of thermo-mechanical and chemo-thermo-mechanical pulps (TMP and CTMP) from beech and pine for the manufacture of medium density fibreboards. Part 2: Properties of medium density fibreboards from beech pulps) Holz Roh- Werkst, 52:293–298Google Scholar
  39. Roffael E, Dix B, Bär G, Bayer R (1995) Über die Eignung von thermo-mechanischem und chemo-thermomechanischem Holzstoff (TMP und CTMP) aus Buchen- und Kiefernholz für die Herstellung von mitteldichten Faserplatten (MDF). Teil 3: Eigenschaften von aus Kiefern-Faserstoff hergestellten MDF. (On the suitability of thermo-mechanical and chemo-thermo-mechanical pulps (TMP and CTMP) from beech and pine for the manufacture of medium density fibreboards Part 3: Properties of MDF from pine wood) Holz Roh- Werkst 53:8–11Google Scholar
  40. Roffael E, Dix B, Schneider T (2001) Thermomechanical (TMP) and Chemo-Termomechanical Pulps (CTMP) for Medium Density Fibreboard (MDF). Holzforschung 55:214–218CrossRefGoogle Scholar
  41. Roffael E, Bär G, Behn C, Dix B (2009) Einfluss der Aufschlusstemperatur auf die morphologischen Eigenschaften von TMP aus Kiefernholz. (Effect of pulping temperature on the morphological properties of TMP made from pine wood). Eur J Wood Prod 67:119–120CrossRefGoogle Scholar
  42. Schiegl C (2004) Quantifizierung von Lignin aus Papierabwässern mittels Py-GC/MS und UV/VIS. (Quantification of lignin from paper production waste water by Py-GC/MS and UV/VIS). Dissertation, Technical University of Munich, Germany, p 122Google Scholar
  43. Schmid H (2013) Neues über Fibreshape. (News about Fibreshape). Benutzertreffen Fibreshape 2013. Institute for Bioplastics and Biocomposites (IfBB), University of Applied Sciences and Arts Hannover, Hannover, GermanyGoogle Scholar
  44. Schneider T (1999) Untersuchungen über den Einfluss von Aufschlussbedingungen des Holzes und der Fasertrocknung auf die Eigenschaften von mitteldichten Faserplatten. (Investigations on the influence of the defibaration conditions of the wood and fiber trying on the properties of medium-density fiberboards). Dissertation thesis, Georg-August-Universität Göttingen, Shaker Verlag, Aachen, Germany, p 84Google Scholar
  45. Schneider T, Roffael E (2000) Einfluß von Holzaufschlußverfahren (TMP-, CTMP-Verfahren) und Aufschlußbedingungen auf die physikalisch-technologischen Eigenschaften von mitteldichten Faserplatten (MDF). (Influence of wood defribration method (TMP, CTMP process) and process parameters on the physical-technological properties of medium-density fiberboards (MDF)). Holz Roh- Werkst 58:123–124CrossRefGoogle Scholar
  46. Schneider T, Roffael E, Windeisen E, Wegener G (2004) Einfluss der Aufschlusstemperatur auf lösliche Kohlenhydrate bei der TMP-Herstellung. (Influence of defibration temperature on soluble carbonhydrates in the manufacture of TMP). Holz Roh Werkst 62:321–322CrossRefGoogle Scholar
  47. Seppke B, Bähnisch C, Benthien JT, Heldner S, Ohlmeyer M (2015) A Concurrent Skeleton-based Approach for the Characterization of Wood Fibers with Sub-pixel Precision For Fiber Board Production. International Conference on Mass Data Analysis of Images and Signals (MDA) 11–24, July 2015, Hamburg, GermanyGoogle Scholar
  48. Shi JI, Zhang SY, Riedl B (2006) Multivariate modeling of MDF panel properties in relation to wood fiber characteristics. Holzforschung 60:285–293Google Scholar
  49. Sliseris J, Andrä H, Kabel M, Wirjadi O, Dix B, Plinke B (2016) Estimation of fiber orientation and fiber bundles of MDF. Mater Struct. doi:10.1617/s11527-0150769-1 Google Scholar
  50. Wagenführ et al. (2008) Taschenbuch der Holztechnik. [Pocket book of the wood technology]. Carl Hanser, München, GermanyGoogle Scholar
  51. Weber A, Rapthel A, Sonntag U (2014) Echtzeit-Charakterisierung von Holzpartikeln für die Qualitätssicherung und Prozessoptimierung bei der Herstellung von Holzpartikelwerkstoffen in der Holzwerkstoffindustrie—Quick Wood-Particle Size. (Real time characterization of wood particles for the quality assurance and process optimization in the production of wood particle-based materials in the wood-based panel industry). Institut für Holztechnologie gGmbH (IHD), Dresden, Final Report 383 ZBRGoogle Scholar
  52. Wenderdel C, Krug D (2012) Untersuchungen zum Einfluss der Aufschlussbedingungen auf die morphologische Ausprägung von aus Kiefernholz hergestellten TMP-Faserstoff. (Investigation of the influence of pulping parameters on morphological characteristics of TMP-pulp made from Scots pine). Eur J Wood Wood Prod 70:85–89CrossRefGoogle Scholar
  53. Wenderdel C, Hesse E, Krug D, Hänsel A, Niemz P (2013) Influence of surface roughness of wood fibres on properties of medium density fibreboards. Pro Ligno 9(4):423–429Google Scholar
  54. Wenderdel C, Weber A, Pfaff M, Sonntag U, Theumer T (2014) Spezielle Methoden zur morphologischen Charakterisierung lignocelluloser Faserstoffe—Teil 1: Stand der Technik und theoretische Ableitung einer Partikelklassifizierung. (Special techniques for the morphological characterization of lignocellulosic fibers—Part 1: state of the art and theoretical derivation of a particle classification). Holztechnologie 55(6):12–19Google Scholar
  55. Wessbladh A, Mohr R (1999) Faserfeinheiten: Moderne Ana-lysemethoden liefern Online-Qualitätsindizes. (Fiber fineness: modern analysis methods provide online quality indices). MDF-Magazin, DRW-Verlag Weinbrenner GmbH & Co, Leinfelden-Echterdingen, GermanyGoogle Scholar
  56. Xing C, Deng J, Zhang SY, Riedl B, Cloutier A (2006) Properties of MDF from black spruce tops as affected by thermomechanical refining conditions. Holz Roh Werkst 64:507–512CrossRefGoogle Scholar
  57. Xing C, Wang S, Pharr GM, Groom LH (2008) Effects of thermo-mechanical refining pressure on the properties of wood fibers as measured by nanoindentation and atomic force microscopy. Holzforschung 62:230–236CrossRefGoogle Scholar
  58. Xing C, Wang S, Pharr GM (2009) Nanoindentation of juvenile and mature loblolly pine (Pinus taeda L.) wood fibers as affected by thermomechanical refining pressure. Wood Sci Technol 43:615–625CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jan T. Benthien
    • 1
  • Sabrina Heldner
    • 1
  • Martin Ohlmeyer
    • 1
  1. 1.Thünen Institute of Wood ResearchHamburgGermany

Personalised recommendations