Advertisement

European Journal of Wood and Wood Products

, Volume 74, Issue 3, pp 331–351 | Cite as

Cross laminated timber (CLT): overview and development

  • R. BrandnerEmail author
  • G. Flatscher
  • A. Ringhofer
  • G. Schickhofer
  • A. Thiel
Original

Abstract

Cross laminated timber (CLT) has become a well-known engineered timber product of global interest. The orthogonal, laminar structure allows its application as a full-size wall and floor element as well as a linear timber member, able to bear loads in- and out-of-plane. This article provides a state-of-the-art report on some selected topics related to CLT, in particular production and technology, characteristic material properties, design and connections. Making use of general information concerning the product’s development and global market, the state of knowledge is briefly outlined, including the newest findings and related references for background information. In view of ongoing global activities, a significant rise in production volume within the next decade is expected. Prerequisites for the establishment of a solid timber construction system using CLT are (1) standards comprising the product, testing and design, (2) harmonized load-bearing models for calculating CLT properties based on the properties of the base material board, enabling relatively fast use of local timber species and qualities, and (3) the development of CLT adequate connection systems for economic assembling and an increasing degree of utilization regarding the load-bearing potential of CLT elements in the joints. The establishment of a worldwide harmonized package of standards is recommended as this would broaden the fields of application for timber engineering and strengthen CLT in competition with solid-mineral based building materials.

Keywords

Timber Oriented Strand Board Bonding Pressure Cross Laminate Timber Rolling Shear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The research work was conducted at the Institute of Timber Engineering and Wood Technology at the Graz University of Technology as well as at the Competence Centre Holz.Bau Forschungs GmbH in the framework of the COMET K-Project “focus solid timber solutions (focus_sts)”. We would like to express our thanks to all partners involved. The publication was written in the framework of the COST Action FP1004 “Enhance mechanical properties of timber, engineered wood products and timber structures”, chaired by Richard Harris, University of Bath.

References

  1. Abrahamsen RB (2013) Bergen im Holzbaufieber–der wohl erste 14 Geschosser [Bergen in timber fever—the first 14 story building]. In: 19. Internationales Holzbau-Forum IHF 2013, Garmisch-Partenkirchen (in German) Google Scholar
  2. Andreolli M, Rigamonti MA, Tomasi R (2014) Diagonal compression test on cross laminated timber panels. In: 13th World Conference on Timber Engineering (WCTE 2014), QuebecGoogle Scholar
  3. Blaß HJ, Flaig M (2012) Stabförmige Bauteile aus Brettsperrholz [Beams made of cross laminated timber]. Karlsruher Berichte zum Ingenieurholzbau, Universitätsverlag Karlsruhe, Karlsruhe (in German) Google Scholar
  4. Blaß HJ, Görlacher R (2002) Zum Trag- und Verformungsverhalten von Brettsperrholz-Elementen bei Beanspruchung in Plattenebene: Teil 2 [Contribution to the deformation behavior of cross laminated timber elements in-plane: Part 2]. Bauen mit Holz 12:30–34 (in German) Google Scholar
  5. Bogensperger T (2013) Darstellung und praxistaugliche Aufbereitung für die Ermittlung mitwirkender Plattenbreiten von BSP-Elementen [Description and practicable rules for determination of the effective width of rib floors as composite of CLT and GLT]. Research Report, holz.bau forschungs gmbh, Graz (in German) Google Scholar
  6. Bogensperger T (2014a) Punktgestützte Platten aus Brettsperrholz [Concentrated loads on CLT plates]. Research Report, holz.bau forschungs gmbh, Graz (in German, in progress) Google Scholar
  7. Bogensperger T (2014b) Lasteinleitung in Wandscheiben aus Brettsperrholz [Concentrated loads on CLT walls]. Research Report, holz.bau forschungs gmbh, Graz (in German) Google Scholar
  8. Bogensperger T, Moosbrugger T, Schickhofer G (2007) New test configuration for CLT‐wall‐elements under shear load. In: 40th CIB-W18 Meeting, BledGoogle Scholar
  9. Bogensperger T, Moosbrugger T, Silly G (2010) Verification of CLT-plates under loads in plane. In: 11th World Conference on Timber Engineering (WCTE2010), Riva del GardaGoogle Scholar
  10. Bogensperger T, Augustin M, Schickhofer G (2011) Properties of CLT-panels exposed to compression perpendicular to their plane. In: 44th CIB-W18 Meeting, AlgheroGoogle Scholar
  11. Bogensperger T, Silly G, Schickhofer G (2012) Comparison of methods of approximate verification procedures for cross laminated timber. Research Report, holz.bau forschungs gmbh, GrazGoogle Scholar
  12. Bosl R (2002) Zum Nachweis des Trag‐ und Verformungsverhaltens von Wandscheiben aus Brettsperrholz [Contribution to the load and displacement behavior of cross laminated timber diaphragms]. Dissertation, Military University Munich (in German) Google Scholar
  13. Brandner R (2013) Production and technology of cross laminated timber (CLT): a state-of-the-art report. In: Harris R, Ringhofer A, Schickhofer G (eds) Focus solid timber solutions—European conference on cross laminated timber (CLT). The University of Bath, BathGoogle Scholar
  14. Brandner R, Schickhofer G (2006) System effects of structural elements—determined for bending and tension. In: 9th World Conference on Timber Engineering (WCTE 2006), PortlandGoogle Scholar
  15. Brandner R, Schickhofer G (2008) Glued laminated timber in bending: new aspects concerning modelling. Wood Sci Technol 42(5):401–425CrossRefGoogle Scholar
  16. Brandner R, Schickhofer G (2014) Properties of cross laminated timber (CLT) in compression perpendicular to grain. In: 1st INTER-Meeting, BathGoogle Scholar
  17. Brandner R, Bogensperger T, Schickhofer G (2013) In plane shear strength of cross laminated timber (CLT): test configuration, quantification and influencing parameters. In: 46th CIB‐W18 Meeting, VancouverGoogle Scholar
  18. Brandner R, Dietsch P, Dröscher J, Schulte-Wrede M, Kreuzinger H, Sieder M, Schickhofer G, Winter S (2015) Shear properties of cross laminated timber (CLT) under in-plane load: Test configuration and experimental study. In: 2nd INTER-Meeting, SibenikGoogle Scholar
  19. Bratulic K, Flatscher G, Brandner R (2014) Monotonic and cyclic behaviour of joints with self-tapping screws in CLT structures. In: Schober KU (ed) COST action FP1004: experimental research with timber. The University of Bath, BathGoogle Scholar
  20. Ceccotti A, Lauriola MP, Pinna M, Sandhaas C (2006a) SOFIE Project—cyclic tests on cross-laminated wooden panels. In: 9th World Conference on Timber Engineering (WCTE2006), PortlandGoogle Scholar
  21. Ceccotti A, Follesa M, Lauriola MP, Sandhaas C, Minowa C, Kawai N, Yasumura M (2006b) Which seismic behaviour factor for multi-storey buildings made of cross-laminated wooden panels? In: 39th CIB-W18 Meeting, FlorenceGoogle Scholar
  22. Ciampitti A (2013) Untersuchung ausgewählter Einflussparameter auf die Querdruckkenngrößen von Brettsperrholz [Investigations on selected influencing parameters on the mechanical properties in compression perpendicular to the grain of cross laminated timber]. Master’s thesis, Graz University of Technology (in German) Google Scholar
  23. Colling F (1990) Tragfähigkeit von Biegeträgern aus Brettschichtholz in Abhängigkeit von den festigkeitsrelevanten Einflussgrößen [Bearing capacity of glulam in bending in dependency on strength relevant characteristics]. Karlsruher Berichte zum Ingenieurholzbau, Universitätsverlag Karlsruhe, Karlsruhe (in German) Google Scholar
  24. Cziesielski E (1974) Hölzerne Dachflächentragwerke [Shell structures for timber roofs]. In: Halasz R and Scheer C (eds) Holzbau-Taschenbuch, Band 1: Grundlagen, Entwurf und Konstruktionen. 7., neu bearbeitete Auflage. Ernst & Sohn, Berlin (in German) Google Scholar
  25. DIN EN 1995-1-1/NA (2010) National Annex—Nationally determined parameters—Eurocode 5: Design of timber structures—Part 1-1: General—Common rules and rules for buildings. DIN Deutsches Institut für Normung e. VGoogle Scholar
  26. Dröge G, Stoy KH (1981) Grundzüge des neuzeitlichen Holzbaues: Konstruktionselemente, Berechnung und Ausführung [Basics of contemporary timber engineering: construction elements, design and execution], vol 1. Ernst & Sohn, Berlin (in German) Google Scholar
  27. Dujic B, Aicher S, Zarnic R (2005) Racking of wooden walls exposed to different boundary conditions. In: 38th CIB-W18 Meeting, StuttgartGoogle Scholar
  28. Dujic B, Klobcar S, Zarnic R (2007) Influence of openings on shear capacity of wooden walls. In: 40th CIB-W18 Meeting, Bled, SloveniaGoogle Scholar
  29. Ehrhart T, Brandner R, Schickhofer G, Frangi A (2015) Rolling shear properties of some European timber species with focus on cross laminated timber (CLT): test configuration and parameter study. In: 2nd INTER-Meeting, SibenikGoogle Scholar
  30. EN 13986 (2002) Wood-based panels for use in construction—characteristics, evaluation of conformity and marking. European Committee for Standardization (CEN)Google Scholar
  31. EN 14080 (2013) Timber structures—glued laminated timber and glued solid timber—requirements. European Committee for Standardization (CEN)Google Scholar
  32. EN 16351 (2014) Timber structures—cross laminated timber—requirements. Draft version, European Committee for Standardization (CEN)Google Scholar
  33. EN 1995-1-1 (2009) Eurocode 5: design of timber structures—part 1-1: general—common rules and rules for buildings. European Committee for Standardization (CEN)Google Scholar
  34. EN 1995-1-2 (2006) Eurocode 5: design of timber structures—part 1-2: general—structural fire design. European Committee for Standardization (CEN)Google Scholar
  35. EN 1998-1:2004 +AC +A1 (2013) Eurocode 8: design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. European Committee for Standardization (CEN)Google Scholar
  36. EN 338 (2009) Structural timber—strength classes. European Committee for Standardization (CEN)Google Scholar
  37. EN 384 (2010) Structural timber—determination of characteristic values of mechanical properties and density. European Committee for Standardization (CEN)Google Scholar
  38. Flaig M (2013) Biegeträger aus Brettsperrholz bei Beanspruchung in Plattenebene [Beams made of cross laminated timber subjected to bending in-plane]. Karlsruher Berichte zum Ingenieurholzbau, Universitätsverlag Karlsruhe, Karlsruhe (in German) Google Scholar
  39. Flaig M (2014) Design of CLT beams with rectangular holes or notches. In: 1st INTER Meeting, BathGoogle Scholar
  40. Flaig M (2015) Design of CLT beams with large finger joints at different angles. In: 2nd INTER Meeting, SibenikGoogle Scholar
  41. Flaig M, Blaß HJ (2013) Shear strength and shear stiffness of CLT‐beams loaded in plane. In: 46th CIB‐W18 Meeting, VancouverGoogle Scholar
  42. Flatscher G, Schickhofer G (2015) Shaking table test of a cross-laminated timber structure. ICE J Struct Build 168(11):878–888Google Scholar
  43. Flatscher G, Bratulic K, Schickhofer G (2014a) Experimental tests on cross-laminated timber joints and walls. ICE J Struct Build. doi: 10.1680/stbu.13.00085 Google Scholar
  44. Flatscher G, Bratulic K, Schickhofer G (2014b) Screwed joints in cross-laminated timber structures. In: 13th World Conference on Timber Engineering (WCTE 2014), QuebecGoogle Scholar
  45. Follesa M, Fragiacomo M, Lauriola MP (2011) A proposal for revision of the current timber part (Section 8) of Eurocode 8 Part 1. In: 44th CIB-W18 Meeting, AlgheroGoogle Scholar
  46. Frangi A, Fontana M, Hugi E, Jöbstl RA (2009) Experimental analysis of cross-laminated timber panels in fire. Fire Saf J 44(8):1078–1087CrossRefGoogle Scholar
  47. Gagnon S, Pirvu C (eds., 2011) CLT Handbook: cross-laminated timber. Canadian Edition. ISBN:978-0-86488-547-0Google Scholar
  48. Gavric I, Fragiacomo M, Ceccotti A (2014) Cyclic behaviour of typical metal connectors for cross-laminated (CLT) structures. Mater Struct. doi: 10.1617/s11527-014-0278-7 Google Scholar
  49. Gavric I, Fragiacomo M, Ceccotti A (2015a) Cyclic behaviour of typical screwed connections for cross-laminated (CLT) structures. Eur J Wood Prod 73(2):179–191CrossRefGoogle Scholar
  50. Gavric I, Fragiacomo M, Ceccotti A (2015b) Cyclic behaviour of CLT wall systems: Experimental tests and analytical prediction models. J Struct Eng. doi: 10.1061/(ASCE)ST.1943-541X.0001246 Google Scholar
  51. Görlacher R (2002) Ein Verfahren zur Ermittlung des Rollschubmoduls von Holz [A method for determining the rolling shear modulus of timber]. Holz Roh Werkst 60:317–322 (in German) CrossRefGoogle Scholar
  52. Grabner M (2013) Einflussparameter auf den Ausziehwiderstand selbstbohrender Holzschrauben in BSP-Schmalflächen [Influencing effects on the withdrawal resistance of self-tapping screws in the narrow faces of CLT]. Master’s thesis, Graz University of Technology (in German) Google Scholar
  53. Gülzow A (2008) Zerstörungsfreie Bestimmung der Biegesteifigkeiten von Brettsperrholzplatten [Non-destructive determination of bending stiffnesses of cross lamanted timber elements]. Dissertation, ETH Zurich (in German) Google Scholar
  54. Guttmann E (2008) Brettsperrholz: Ein Produktporträt [Cross laminated timber: a product profile]. Zuschnitt 31:12–14 (in German) Google Scholar
  55. Halili Y (2008) Versuchstechnische Ermittlung von Querdruckkenngrößen für Brettsperrholz [Experimental determination of compression perpendicular to grain properties of cross laminated timber]. Diploma thesis, Graz University of Technology (in German) Google Scholar
  56. Hamm P, Richter A, Winter S (2010) Floor vibrations—new results. 11th World Conference on Timber Engineering (WCTE2010), Riva del GardaGoogle Scholar
  57. Harris R, Ringhofer A, Schickhofer G (2013) Focus solid timber solutions—European conference on cross laminated timber (CLT). The University of Bath, BathGoogle Scholar
  58. Hirschmann B (2011) Ein Beitrag zur Bestimmung der Scheibenschubfestigkeit von Brettsperrholz [A contribution to the determination of in-plane shear strength of cross laminated timber]. Master’s thesis, Graz University of Technology (in German) Google Scholar
  59. Hochreiner G, Füssl J, Eberhardsteiner J (2013) Cross-laminated timber plates subjected to concentrated loading—experimental identification of failure mechanisms. Strain 50(1):68–81CrossRefGoogle Scholar
  60. Hochreiner G, Füssl J, Serrano E, Eberhardsteiner J (2014) Influence of wooden board strength class on the performance of cross-laminated timber plates investigated by means of full-field deformation measurements. Strain 50(2):161–173CrossRefGoogle Scholar
  61. Hummel J, Flatscher G, Seim W, Schickhofer G (2013) CLT wall elements under cyclic loading—details for anchorage and connection. In: Harris R, Ringhofer A, Schickhofer G (eds) COST Action FP1004: focus solid timber solutions—European conference on cross laminated timber (CLT). The University of Bath, BathGoogle Scholar
  62. Jakobs A (2005) Zur Berechnung von Brettlagenholz mit starrem und nachgiebigem Verbund unter plattenartiger Belastung unter besonderer Berücksichtigung des Rollschubes und der Drillweichheit [Calculation of laminar laminated timber as rigid and flexible composite loaded out-of-plane with particular consideration of rolling shear and twisting]. Dissertation, Universität der Bundeswehr (in German) Google Scholar
  63. Jeitler G (2004) Versuchstechnische Ermittlung der Verdrehungskenngrößen von orthogonal verklebten Brettlamellen [Experimental determination of torsion properties of orthogonally bonded board segments]. Master’s thesis, Graz University of Technology (in German) Google Scholar
  64. Jeitler G, Brandner R (2008) Modellbildung für DUO-, TRIO- und QUATTRO-Querschnitte [Modelling of DUO-, TRIO- and QUATTRO-beams]. In: Schickhofer G, Brandner R (eds) 7. Grazer Holzbau-Fachtagung (7.GraHFT’08): Modellbildung für Produkte und Konstruktionen aus Holz – Bedeutung von Simulation und Experiment. Verlag der Technischen Universität Graz, Graz (in German) Google Scholar
  65. Jöbstl RA, Schickhofer G (2007) Comparative examination of creep of GLT and CLT slabs in bending. In: 40th CIB-W18 Meeting, BledGoogle Scholar
  66. Jöbstl RA, Bogensperger T, Schickhofer G, Jeitler G (2004) Mechanical behaviour of two orthogonally glued boards. In: 8th World Conference on Timber Engineering (WCTE 2004), LahtiGoogle Scholar
  67. Jöbstl RA, Bogensperger T, Moosbrugger T, Schickhofer G (2006) A contribution to the design and system effect of cross laminated timber (CLT). In: 39th CIB-W18 Meeting, FlorenceGoogle Scholar
  68. Jöbstl RA, Bogensperger T, Schickhofer G (2008) In-plane shear strength of cross laminated timber. In: 41st CIB-W18 Meeting, St. AndrewsGoogle Scholar
  69. Kairi M (2002) Chapter 4.4: Glued/screwed joints/screw glued wooden structures. In: Johansson CJ, Pizzi T, Leemput MV (eds) COST Action E13 “wood adhesion and glued products”, working group 2: glued wood products: state of the art report, 2nd edn. ISBN:92-894-4892-XGoogle Scholar
  70. Karacabeyli E, Douglas B (2013) CLT Handbook: cross-laminated timber. US Edition, ISBN 978-0-86488-553-1Google Scholar
  71. Kawai N, Tsuchimoto T, Tsuda C, Murakami S, Miura S, Isoda H, Miyake T (2014) Lateral loading tests on CLT shear walls by assembly of narrow panels and by a large panel with an opening. In: 13th World Conference on Timber Engineering (WCTE 2014), QuebecGoogle Scholar
  72. Kennedy S, Selenikovich A, Munoz W, Mohammad M (2014) Design equations for dowel embedment strength and withdrawal resistance for threaded fasteners in CLT. In: 13th World Conference on Timber Engineering (WCTE 2014), QuebecGoogle Scholar
  73. Klippel M (2014) Fire safety of bonded structural timber elements. Dissertation, ETH ZurichGoogle Scholar
  74. Klippel M, Schmid J, Frangi A, Fink G (2014) Fire Design of glued-laminated timber beams with regard to the adhesive performance using the reduced cross-section method. In: 1st INTER-Meeting, BathGoogle Scholar
  75. Konnerth J, Valla A, Gindl W, Müller U (2006) Measurement of strain distribution in timber finger joints. Wood Sci Technol 40(8):631–636CrossRefGoogle Scholar
  76. Kraler A, Kögl J, Maderebner R (2014) Sherpa-CLT-Connector for cross laminated timber (CLT) elements. In: 13th World Conference on Timber Engineering (WCTE 2014), QuebecGoogle Scholar
  77. Kreuzinger H (1999) Flächentragwerke—Platten, Scheiben und Schalen—Berechnungsmethoden und Beispiele [Plane load-bearing structures—plates loaded in- and out-of-plane and shells—calculation methods and examples]. Fachverlag Holz, Dusseldorf (in German) Google Scholar
  78. Kreuzinger H (2000) Verbundkonstruktionen aus nachgiebig miteinander verbundenen Querschnittsteilen [Composite structures of flexible connected cross-sections]. Ingenieurholzbau Karlsruher Tage. Bruderverlag Karlsruhe, pp 43–55, (in German) Google Scholar
  79. Kreuzinger H (2002) Verbundkonstruktionen [Composite structures]. Holzbaukalender 2002. Bruderverlag, Karlsruhe, pp 598–621 (in German) Google Scholar
  80. Kreuzinger H, Scholz S (2001) Schubtragverhalten von Brettsperrholz [Shear behavior in cross laminated timber]. Research report, Technische Universität München, Munich (in German) Google Scholar
  81. Kreuzinger H, Sieder M (2013) Einfaches Prüfverfahren zur Bewertung der Schubfestigkeit von Kreuzlagenholz/Brettsperrholz [Simple test setup for assessment of shear strength of cross laminated timber]. Bautechnik 90(5):314–316 (in German) CrossRefGoogle Scholar
  82. Lischke N (1985) Zur Anisotropie von Verbundwerkstoffen am Beispiel von Brettlagenholz [Regarding the anisotropy of composite products exemplarily for laminar laminated timber]. VDI, ISBN 978-3181498057 (in German) Google Scholar
  83. Mahlknecht U, Brandner R (2013) Untersuchungen des mechanischen Verhaltens von Schrauben—Verbindungsmittelgruppen in VH, BSH und BSP [Investigations concerning the mechanical behavior of screwed connections in ST, GLT and CLT]. Research Report, holz.bau forschungs gmbh, Graz (in German) Google Scholar
  84. Mahlknecht U, Brandner R, Ringhofer A, Schickhofer G (2014) Resistance and fairue modes of axially loaded groups of screws. In: Aicher S, Reinhardt HW, Garrecht H (eds) Materials and joints in timber structures, RILEM Book series 9. doi: 10.1007/978-94-007-7811-5_27
  85. Mestek P (2011) Punktgestützte Flächentragwerke aus Brettsperrholz (BSP)—Schubbemessung unter Berücksichtigung von Schubverstärkungen [Cross laminated timber (CLT) plane structures under concentrated loading from point supports—shear design including reinforcements]. Dissertation, Technische Universität München, Munich (in German) Google Scholar
  86. Möhler K (1962) Über das Tragverhalten von Biegeträgern und Druckstäben mit zusammengesetzten Querschnitten und nachgiebigen Verbindungsmitteln [About the load bearing capacity of beams in bending and bars in compression with composite cross sections and flexible connections]. Habilitation, TH Karlsruhe (in German) Google Scholar
  87. Möhler K (1966) Die Bemessung der Verbindungsmittel bei zusammengesetzten Biege- und Druckgliedern im Holzbau [Design of connections for composite beam and bar cross sections]. Bauen mit Holz 68:162–164 (in German) Google Scholar
  88. Moser K (1995) Dickholz durch Vakuum [Dickholz through vacuum]. Bauen mit Holz 11:941–947 (in German) Google Scholar
  89. Muñoz W, Mohammad M, Gagnon S (2010) Lateral and withdrawal resistance of typical CLT connections. 11th World Conference on Timber Engineering (WCTE 2010), Riva del Garda, ItalyGoogle Scholar
  90. ÖNORM B 1995-1-1 (2014) Eurocode 5: Design of timber structures—part 1-1: general—common rules and rules for buildings—national specifications, national comments and national supplements concerning ÖNORM EN 1995-1-1. Austrian Standards Institute (ASI)Google Scholar
  91. Plackner H (2014) Nicht mehr wegzudenken—Massivholz hat sich den Platz geschaffen [Undisputable—solid timber has created its market]. Holzkurier BSP Special 4–5:2014 (German) Google Scholar
  92. Plüss Y, Brandner R (2014) Untersuchungen zum Tragverhalten von axial beanspruchten Schraubengruppen in der Schmalseite von Brettsperrholz (BSP) [Investigations concerning the bearing behaviour of axially loaded screw groups in the narrow face of cross laminated timber (CLT)]. In: 20. Internationales Holzbau-Forum IHF 2014, Garmisch-Partenkirchen (in German) Google Scholar
  93. Polastri A, Angeli A, Gianni DR (2014) A new construction system for CLT structures. In: 13th World Conference on Timber Engineering (WCTE 2014), QuebecGoogle Scholar
  94. Rattasepp T, Mang HA (1989) Zur Stabilität flacher eckgestützter Hyparschalen aus Holz mit geradlinigen Randträgern [Regarding stability of flat edge supported hypar shells in timber with straight-lined edge girders]. Bauingenieur 64:255–266 (in German) Google Scholar
  95. Ringhofer A, Ehrhart T, Brandner R, Schickhofer G (2013) Prüftechnische Ermittlung weiterer Einflussparameter auf das Tragverhalten der Einzelschraube in der BSP-Seitenfläche [Experimental determination of further influencing parameters on the load bearing behaviour of single screws placed in the side face of CLT]. Research Report, holz.bau forschungs gmbh, Graz (in German) Google Scholar
  96. Ringhofer A, Brandner R, Schickhofer G (2015a) Withdrawal resistance of self-tapping screws in unidirectional and orthogonal layered timber products. Mater Struct 48:1435–1447CrossRefGoogle Scholar
  97. Ringhofer A, Brandner R, Schickhofer G (2015b) A universal approach for withdrawal properties of self-tapping screws in solid timber and laminated timber products. In: 2nd INTER-Meeting, ŠibenikGoogle Scholar
  98. Salzmann C (2010) Ermittlung von Querdruckkenngrößen für Brettsperrholz (BSP) [Determination of compression perpendicular to grain properties of cross laminated timber (CLT)]. Master’s thesis, Graz University of Technology (in German) Google Scholar
  99. Schelling W (1968) Die Berechnung nachgiebig verbundener zusammengesetzter Biegeträger im Ingenieurholzbau [The calculation of flexible connected composite beams in timber engineering]. Dissertation, TH Karlsruhe (in German) Google Scholar
  100. Schelling W (1982) Zur Berechnung nachgiebig zusammengesetzter Biegeträger aus beliebig vielen Einzelquerschnitten [The calculation of flexible connected composite beams of an arbitrary number of cross sections]. In: Ehlbeck J, Steck G (eds) Ingenieurholzbau in Forschung und Praxis. Bruderverlag, Karlsruhe (in German) Google Scholar
  101. Schickhofer G (1994) Starrer und nachgiebiger Verbund bei geschichteten, flächenhaften Holzstrukturen [Rigid and Flexible Composite Action of Laminated Timber Structures]. Dissertation, Graz University of Technology (in German) Google Scholar
  102. Schickhofer G (2015) CLT—European experience: idea & development, technology & applications. In: Presentation, CLT Seminar, Kochi, Japan, 5th February 2015Google Scholar
  103. Schickhofer G, Hasewend B (2000) Solid timber construction: a construction system for residential houses, offices and industrial buildings. In: Ceccotti A, Thelandersson S (eds) Cost Action E5—proceedings of timber frame building systems: Seismic behavior of timber buildings, timber construction in the new millennium, VeniceGoogle Scholar
  104. Schickhofer G, Bogensperger T, Moosbrugger T (eds., 2010) BSPhandbuch: Holz-Massivbauweise in Brettsperrholz—Nachweise auf Basis des neuen europäischen Normenkonzepts [CLThandbook: solid timber construction technique with cross laminated timber—verification based on the new European standardization concept]. Verlag der Technischen Universität Graz, Graz (in German) Google Scholar
  105. Schmid J, König J, Köhler J (2010) Fire exposed cross laminated timber—modeling and tests. In: 11th World Conference of Timber Engineering (WCTE 2010), Riva di GardaGoogle Scholar
  106. Schneider J, Karacabeyli E, Popovski M, Stiemer SF, Tesfamariam S (2014) Damage assessment of connections used in cross-laminated timber subject to cyclic loads. J Perform Constr Facil. doi: 10.1061/(ASCE)CF.1943-5509.0000528 Google Scholar
  107. Scholz A (2004) Ein Beitrag zur Berechnung von Flächentragwerken aus Holz [A contribution for calculation of spatial timber structures]. Dissertation, Technische Universität München (in German) Google Scholar
  108. Seim W, Hummel J, Vogt T (2014) Earthquake design of timber structures—remarks on force-based design procedures for different wall systems. Eng Struct 76:124–137CrossRefGoogle Scholar
  109. Serrano E, Enquist B (2010) Compression strength perpendicular to grain in cross-laminated timber (CLT). In: 11th World Conference on Timber Engineering (WCTE 2010), Riva del GardaGoogle Scholar
  110. Silva C, Ringhofer A, Branco JM, Lourenco PB, Schickhofer G (2014) Influence of moisture content and gaps on the withdrawal resistance of self-tapping screws in CLT. In: 9th Congresso Nacional de Mecânica Experimental, AveiroGoogle Scholar
  111. Steurer A (1989) Entwurfsgrundlagen und Konstruktionsprinzipien von Holzstegen [Design pronciples and construction pronciples of pedestrian timber bridges]. 21. Fortbildungskurs der Schweizerische Arbeitsgemeinschaft für Holzforschung (SAH) “Brücken und Stege aus Holz”, Zurich (in German) Google Scholar
  112. Sustersic I, Dujic B (2012) Simplified cross-laminated timber wall modelling for linear-elastic seismic analysis. In: 45th CIB-W18 Meeting, VäxjöGoogle Scholar
  113. Thiel A (2013) ULS and SLS design of CLT and its implementation in the CLTdesigner. In: Harris R, Ringhofer A, Schickhofer G (eds) Focus solid timber solutions—European conference on cross laminated timber (CLT). The University of Bath, BathGoogle Scholar
  114. Thiel A, Schickhofer G (2012) Design methods of cross laminated timber concerning floor vibrations: a comparability study. Research Report, holz.bau forschungs gmbh, GrazGoogle Scholar
  115. Thiel A, Augustin M, Bogensperger T (2015) Stabilitätsuntersuchungen von BSP [Stability problems of CLT structures]. Research Report, holz.bau forschungs gmbh, Austria (in German, in progress) Google Scholar
  116. Timoshenko SP (1921) On the correction factor for shear of the differential equation for transverse vibrations of bars of uniform cross-section. Phil Mag 41:744–746CrossRefGoogle Scholar
  117. Timoshenko SP (1922) On the transverse vibrations of bars of uniform cross-section. Phil Mag 43:125–131CrossRefGoogle Scholar
  118. Tomasi R, Smith I (2014) Experimental characterization of monotonic and cyclic loading responses of CLT panel-to-foundation angle bracket connections. J Mater Civil Eng 27:04014189. doi: 10.1061/(ASCE)MT.1943-5533.0001144 CrossRefGoogle Scholar
  119. Uibel T, Blaß HJ (2013) Joints with dowel type fasteners in CLT structures. In: Harris R, Ringhofer A, Schickhofer G (eds) COST Action FP1004: focus solid timber solutions—European conference on cross laminated timber (CLT). The University of Bath, BathGoogle Scholar
  120. Unterwieser H, Schickhofer G (2013) Characteristic values and test configurations of CLT with focus on selected properties. In: Harris R, Ringhofer A, Schickhofer G (eds) Focus solid timber solutions—European conference on cross laminated timber (CLT). The University of Bath, BathGoogle Scholar
  121. Wallner G (2004) Versuchstechnische Ermittlung der Verschiebungskenngrößen von orthogonal verklebten Brettlamellen [Experimental determination of displacement properties from two orthogonally bonded board segments]. Master’s thesis, Graz University of Technology (in German) Google Scholar
  122. Wallner-Novak M, Koppelhuber J, Pock K (2013) Brettsperrholz Bemessung—Grundlagen für Statik und Konstruktion nach Eurocode [Cross-laminated timber structural design—basic design and engineering principles according to Eurocode]. proHolzAustria, Vienna (in German) Google Scholar
  123. Winter S, Hamm P, Richter A (2010) Schwingungs- und Dämpfungsverhalten von Holz- und Holz-Beton-Verbunddecken [Vibration and damping behaviour of timber- and timber-concrete composite slabs]. Final Research Report, Technische Universität München (in German) Google Scholar
  124. Blaß HJ, Uibel T (2007) Tragfähigkeit von stiftförmigen Verbindungsmitteln in Brettsperrholz [Load carrying capacity of joints with dowel type fasteners in solid wood panels]. Karlsruher Berichte zum Ingenieurholzbau, Universitätsverlag Karlsruhe, Karlsruhe (in German) Google Scholar
  125. Zimmer S (2013) Ein Beitrag zur Aufarbeitung der Schwingungsthematik für die Holz-Massivbauweise in Brettsperrholz [A Contribution to the subject of vibrations in solid timber construction with CLT]. Master’s thesis, Graz University of Technology (in German) Google Scholar
  126. Zimmer S (2014) Bestimmung der Schwingungseigenschaften von BSP-Elementen durch in situ Messungen [Determination of the vibration characteristics of CLT elements by in situ measurements]. Research Report, holz.bau forschungs gmbh, Graz (in German) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • R. Brandner
    • 1
    Email author
  • G. Flatscher
    • 1
  • A. Ringhofer
    • 1
  • G. Schickhofer
    • 1
  • A. Thiel
    • 2
  1. 1.Institute of Timber Engineering and Wood TechnologyGraz University of TechnologyGrazAustria
  2. 2.Competence Centre Holz.Bau Forschungs GmbHGrazAustria

Personalised recommendations