European Journal of Wood and Wood Products

, Volume 72, Issue 1, pp 117–121 | Cite as

The influence of scavengers on VOC emissions in particleboards made from pine and poplar

  • N. A. Costa
  • M. Ohlmeyer
  • J. Ferra
  • Fernão D. Magalhães
  • A. Mendes
  • L. Carvalho
Originals Originalarbeiten


This paper studies the performance of scavengers on Volatile Organic Compound (VOC) emissions from wood-based composites. Particleboards made from maritime pine (Pinus pinaster Ait.) and European poplar (Populus spp.) were produced with a UF resin doped with melamine and two scavengers, sodium metabisulfite and urea. VOC emission was measured according to EN ISO 16000. Particleboards made from pine present much higher total VOC (TVOC) emissions than boards made from poplar. Pine emits a higher amount of terpenes, but also aldehydes, acids and terpenoids, while poplar emits mainly acetic acid. Sodium metabisulfite showed an excellent ability to reduce aldehydes emission, which represents nearly 50 % of total emission of particleboards made from pine. When sodium metabisulfite was applied to particleboards made from poplar, reduction of TVOCs was not significant due to the low contribution of aldehydes to TVOCs. Urea presents a low reduction in TVOCs for both wood species.


Volatile Organic Compound Poplar Terpene Wood Species Volatile Organic Compound Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Einfluss von Fängersubstanzen auf die VOC-Emissionen von Spanplatten aus Kiefer und Pappel


Gegenstand dieser Untersuchung ist die Wirkung von Fängersubstanzen auf die VOC-Emissionen (Volatile Organic Compound) aus Holzwerkstoffplatten. Hierzu wurden Spanplatten aus den Holzarten Seekiefer (Pinus pinaster Ait.) bzw. Pappel (Populus spp.) hergestellt. Als Klebstoff kam UF-Harz zur Anwendung, das mit Melamin verstärkt und mit jeweils zwei unterschiedlichen Fängersubstanzen versehen wurde: Natriummetabisulfit bzw. Harnstoff. Die Messung der VOC-Emissionen erfolgte gemäß EN ISO 16000. Spanplatten aus Seekiefer wiesen deutlich höhere TVOC-Emissionen (Total VOC) als Platten aus Pappel auf. Die Kiefer emittiert größere Mengen an Terpenen, aber auch Aldehyde, Säuren und Terpenoide. Pappel emittiert hauptsächlich Essigsäure. Natriummetabisulfit bewirkte eine deutliche Abnahme der Aldheydemissionen von Spanplatten aus Seekiefer, wodurch die TVOC-Emissionen um etwa 50 % reduziert wurden. Die Emissionen der Platten aus Pappel waren durch diese Substanz nicht nennenswert beeinflusst, da diese kaum Aldehyde emittieren. Harnstoff hatte nur einen geringen Einfluss auf beide Holzarten.


  1. AIMMP (2013) Industrial uses of maritime pine (in Portuguese). Association of Portuguese Wood and Furniture Industries. Available at Accessed Jan 2013
  2. Carvalho A (1997) Portuguese wood species (in Portuguese), vol 2. Direção Geral das FlorestasGoogle Scholar
  3. Costa N, Pereira J, Ferra J, Cruz P, Moreira J, Martins J, Magalhães F, Mendes A, Carvalho L (2012) The role of sucrose in amino polymers synthesized by the strongly acid process. J Adhes Sci Technol 27(7):763–774CrossRefGoogle Scholar
  4. Costa N, Pereira J, Ferra J, Cruz P, Martins J, Magalhães F, Mendes A, Carvalho L (2013a) Scavengers for achieving zero formaldehyde emission of wood-based panels. Wood Sci Technol 47(6):1261–1272CrossRefGoogle Scholar
  5. Costa N, Pereira J, Ferra J, Cruz P, Martins J, Magalhães F, Mendes A, Carvalho L (2013b) Sodium metabisulfite as a scavenger of air pollutants for wood-based building materials. Int Wood Prod J 4(4):242–247CrossRefGoogle Scholar
  6. Despres A, Pizzi A, Vu C, Delmotte L (2010) Colourless formaldehyde-free urea resin adhesives for wood panels. Eur J Wood Prod 68(1):13–20CrossRefGoogle Scholar
  7. ECA Report No. 18 (1997) Evaluation of VOC emissions from building products. Office for Official Publications of the European Communities, BrusselsGoogle Scholar
  8. EN ISO 16000-6 (2011) Indoor air-Part 6: determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS or MS-FIDGoogle Scholar
  9. EN ISO 16000-9 (2006) Indoor air-Part 9: determination of the emission of volatile organic compounds from building products and furnishing—Emission test chamber methodGoogle Scholar
  10. Eom Y-G, Kim J-S, Kim S, Kim J-A, Kim H-J (2006) Reduction of formaldehyde emission from particleboards by bio-scavengers. MokchaeKonghak 34:29–41Google Scholar
  11. Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter De Gruyter Inc, BerlinGoogle Scholar
  12. Ferra J, Mena P, Martins J, Mendes A, Costa M, Magalhães F, Carvalho L (2010) Optimization of the synthesis of urea-formaldehyde resins using response surface methodology. J Adhes Sci Technol 24(8–10):1455–1472Google Scholar
  13. Fischer M, Aehlig K (2007) Emission of VOC from wood and wood products—two case studies. In: COST Action E49 Conference on Measurement and Control of VOC Emissions from Wood-Based Panels. Braunschweig, GermanyGoogle Scholar
  14. Hodgson A, Beal D, McIlvaine J (2002) Sources of formaldehyde, other aldehydes and terpenes in a new manufactured house. Indoor Air 12(4):235–242PubMedCrossRefGoogle Scholar
  15. Kim S (2009) The reduction of indoor air pollutant from wood-based composite by adding pozzolan for building materials. Constr Build Mater 23(6):2319–2323CrossRefGoogle Scholar
  16. Kim S, Kim H, Kim H, Lee H (2006) Effect of bio-scavengers on the curing behavior and bonding properties of melamine-formaldehyde resins. Macromol Mater Eng 291(9):1027–1034CrossRefGoogle Scholar
  17. Makowski M, Ohlmeyer M (2005) Influences on VOC emissions of wood-based panels. In: 9th European Panel Products Symposium. Llandudno, Wales, UKGoogle Scholar
  18. Makowski M, Ohlmeyer M (2006a) Influences of hot pressing temperature and surface structure on VOC emissions from OSB made of Scots pine. Holzforschung 60(5):533–538CrossRefGoogle Scholar
  19. Makowski M, Ohlmeyer M (2006b) Comparison of a small and a large environmental test chamber for measuring VOC emissions from OSB made of Scots pine (Pinus sylvestris L.). Holz Roh-Werkst 64(6):469–472CrossRefGoogle Scholar
  20. Makowski M, Ohlmeyer M, Meier D (2005) Long-term development of VOC emissions from OSB after hot-pressing. Holzforschung 59(5):519–523CrossRefGoogle Scholar
  21. Martins J, Pereira J, Pinto B, Coelho C, Carvalho L (2007) Effect of recycled wood on formaldehyde release of particleboard. In: COST Action E49 Conference on Measurement and Control of VOC Emission from Wood-Based Panels. Braunschweig, GermanyGoogle Scholar
  22. Ohlmeyer M, Makowski M, Fried H, Hasch J, Scholer M (2008) Influence of panel thickness on the release of volatile organic compounds from OSB made of Pinus sylvestris L. For Prod J 58(1–2):65–70Google Scholar
  23. Paiva N, Henriques A, Cruz P, Ferra J, Carvalho L, Magalhães F (2012) Production of melamine fortified urea-formaldehyde resins with low formaldehyde emission. J Appl Polym Sci 124(3):2311–2317CrossRefGoogle Scholar
  24. Prasittisopin L, Li K (2010) A new method of making particleboard with a formaldehyde-free soy-based adhesive. Compos A Appl Sci Manuf 41(10):1447–1453CrossRefGoogle Scholar
  25. Risholm-Sundman M, Lundgren M, Vestin E, Herder P (1998) Emissions of acetic acid and other volatile organic compounds from different species of solid wood. Holz Roh-Werkst 56(2):125–129CrossRefGoogle Scholar
  26. Steckel V, Welling J, Ohlmeyer M (2010) Emissions of volatile organic compounds from convection dried Norway spruce timber. In: COST Action E53 Conference on The Future of Quality Control for Wood & Wood Products. Edinburgh, ScotlandGoogle Scholar
  27. Tang L, Zhang Z, Qi J, Zhao J, Feng Y (2011) The preparation and application of a new formaldehyde-free adhesive for plywood. Int J Adhes Adhes 31(6):507–512CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • N. A. Costa
    • 1
    • 2
    • 3
  • M. Ohlmeyer
    • 4
  • J. Ferra
    • 2
  • Fernão D. Magalhães
    • 1
  • A. Mendes
    • 1
  • L. Carvalho
    • 1
    • 5
  1. 1.LEPAE-Laboratório de Engenharia de Processos, Ambiente e Energia, Faculdade de EngenhariaUniversidade do PortoPortoPortugal
  2. 2.EuroResinas-Indústrias Químicas, S.A.SinesPortugal
  3. 3.ARCP-Associação Rede de Competências em PolímerosPortoPortugal
  4. 4.Thünen-Institute of Wood ResearchHamburgGermany
  5. 5.DEMad-Departamento de Engenharia de Madeiras, Instituto Politécnico de ViseuCampus Politécnico de RepesesViseuPortugal

Personalised recommendations