European Journal of Wood and Wood Products

, Volume 71, Issue 6, pp 805–813 | Cite as

Flat pressed wood plastic composites made of milled foam core particleboard residues

  • Ali Shalbafan
  • Jan T. Benthien
  • Johannes Welling
  • Marius C. Barbu
Originals Originalarbeiten


Flat pressed wood plastic composites were produced on a laboratory-scale using residues of lightweight foam core particleboards as raw material. Raw material preparation methods (dry blending and compounding with a twin screw extruder) and the wood flour content (WF) loading, as influencing parameters on the panel properties, were varied, and coupling agents (CA) were added in some variations. The results showed that panels produced with lower WF content (75 %) have better physical and mechanical properties compared to those of higher WF. The CAs only influenced the panel properties when they were added during the compounding of the materials. Due to the assumed higher wood degradation resulting from raw material compounding, the panel properties were inferior to the panels produced with dry blended materials.


Coupling Agent Equilibrium Moisture Content Wood Flour Medium Density Fiberboard Wood Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Flachgepresste Holz-Polymer-Verbundwerkstoffe aus Produktionsabfällen von Spanplatten mit Schaumkern


Produktionsabfälle von Leichtbau-Spanplatten mit Schaumkern wurden im Labormaßstab zu flachgepressten Holz-Polymer-Verbundwerkstoffe (WPC) weiterverarbeitet. Als Einflussparameter auf die Platteneigenschaften wurden die weitere Aufbereitung nach dem Zermahlen der Abfälle (Trockenmisch- und Doppelschnecken-Extruder-Verfahren) sowie der Holzanteil variiert. Einigen Varianten wurde Haftvermittler (CA) zugesetzt. Die Platten mit einem niedrigen Holzanteil (75 %) zeigten die besseren physikalischen und mechanischen Eigenschaften. Der Zusatz von Haftvermittler hat sich auf die Platteneigenschaften nur positiv ausgewirkt, wenn dieser vor dem Compoundieren zugegeben wurde. Aufgrund der thermischen und mechanischen Beanspruchung der Holzsubstanz im Extruder waren die Eigenschaften von Platten aus Trockenmischungen denen aus compoundierten Rohmaterialien überlegen.



Ali Shalbafan wishes to thank the Ministry of Science, Research and Technology of Iran for awarding him a scholarship to pursue his education towards a Ph.D. The authors are grateful to B.Sc. Christoph Breitmar, University of Hamburg, for preparing the test samples. The authors express their sincere thanks to Dr. Andreas Krause, University of Göttingen, for his kind support in compounding the test materials.


  1. Adhikary KB, Pang S, Staiger MP (2008) Long-term moisture absorption and thickness swelling behavior of recycled thermoplastics reinforced with Pinus radiata sawdust. Chem Eng J 142:190–198CrossRefGoogle Scholar
  2. Ashori A, Nourbakhsh A (2009) Characteristics of wood–fiber plastic composites made of recycled materials. Waste Manag 29:1291–1295PubMedCrossRefGoogle Scholar
  3. Ayrilmis N, Jarusombuti S (2010) Flat-pressed wood plastic composite as an alternative to conventional wood-based panels. J Compos Mater 45:103–112CrossRefGoogle Scholar
  4. Ayrilmis N, Benthien JT, Thoemen H (2012) Effects of formulation variables on surface properties of wood plastic composites. Compos Part A Appl Sci Manuf 43:325–331CrossRefGoogle Scholar
  5. Balasuriya PW, Ye L, Mai Y-W (2001) Mechanical properties of wood flake–polyethylene composites. Part I: effects of processing methods and matrix melt flow behavior. Compos Part A Appl Sci Manuf 32:619–629CrossRefGoogle Scholar
  6. Benthien JT, Thoemen H (2012) Effects of raw materials and process parameters on the physical and mechanical properties of flat pressed WPC panels. Compos Part A Appl Sci Manuf 43:570–576CrossRefGoogle Scholar
  7. Benthien JT, Thoemen H, Mailkowski S, Lenz MT (2012) Resistance of flat-pressed wood–plastic composites to fungal decay: effects of wood flour content, density and manufacturing technology. Wood Fiber Sci 44:1–8Google Scholar
  8. Bledzki AK, Mamun AA, Volk J (2010) Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their polypropylene composites. Compos Part A Appl Sci Manuf 41:480–488CrossRefGoogle Scholar
  9. Butylina S, Martikka O, Kärki T (2011) Properties of wood fibre–polypropylene composites: effect of wood fibre source. Appl Compos Mater 18:101–111CrossRefGoogle Scholar
  10. Chaharmahali M, Tajvidi M, Kazemi NS (2008) Mechanical properties of wood plastic composite panels made from waste fiberboard and particleboard. Polym Compos 29:606–610CrossRefGoogle Scholar
  11. Chaharmahali M, Mirbagheri J, Tajvidi M, Kazemi NS, Mirbagheri Y (2010) Mechanical and physical properties of wood–plastic composite panels. J Reinf Plast Compos 29:310–319CrossRefGoogle Scholar
  12. Gardner DJ, Han Y, West C (2011) FRP-reinforced wood plastic composite panels for structural applications. In: Proceedings of the 11th international conference on wood and biofiber plastic composites and nanotechnology in wood composites symposium. USDA Forest Products Laboratory, MadisonGoogle Scholar
  13. Geimer RL, Clemons CM, WoodJr JE (1993) Density range of compression-molded polypropylene–wood composites. Wood Fiber Sci 25:163–169Google Scholar
  14. Ichazo MN, Albano C, Gonzale J, Perera R, Candal MV (2001) Polypropylene/wood flour composites: treatments and properties. Compos Struct 54:207–214CrossRefGoogle Scholar
  15. Irle M, Barbu MC (2010) Wood-based panel technology. In: Thoemen H, Irle M, Sernek M (eds) Wood based panels—an introduction for specialists. Brunel University Press, London, pp 1–94Google Scholar
  16. Lu JZ, Wu Q, Negulescu II (2004) Wood-fiber/high-density-polyethylene composites: compounding process. J Appl Polym Sci 93:2570–2578CrossRefGoogle Scholar
  17. Luedtke J, Welling J, Thoemen H, Barbu MC (2008) Development of a continuous process for the production of lightweight panel boards. In: Proceedings of the 8th international conference on sandwich structure, PortoGoogle Scholar
  18. Myers GE, Clemons C, Balatinecz JJ, Woodhams RT (1992) Effects of composition and polypropylene melt flow on polypropylene–waste newspaper composites. In: Proceedings of the annual technical conference of the society of plastic engineers, Detroit, pp 602–604Google Scholar
  19. Niska KO, Sain M (2008) Wood–polymer composites. Woodhead Publishing Ltd, CambridgeCrossRefGoogle Scholar
  20. Nygard P, Tanem BS, Karlsen T, Brachet P, Leinsvang B (2008) Extrusion-based wood fibre–PP composites: wood powder and pelletized wood fibres—a comparative study. Compos Sci Technol 68:3418–3427CrossRefGoogle Scholar
  21. Poletto M, Dettenborn J, Zeni M, Zattera AJ (2011a) Characterization of composites based on expanded polystyrene wastes and wood flour. Waste Manag 31:779–784PubMedCrossRefGoogle Scholar
  22. Poletto M, Zeni M, Zattera AJ (2011b) Effects of wood flour addition and coupling agent content on mechanical properties of recycled polystyrene/wood flour composites. J Thermoplast Compos Mater. doi: 10.1177/0892705711413627 Google Scholar
  23. Rowell RM, Youngquist JA, Mcnatt D (1991) Composite from recycled materials. In: Proceedings of the 25th international particleboard/composite materials symposium. Washington State University, Washington, pp 301–314Google Scholar
  24. Sanadi AR, Hunt JF, Caulfield DF (2001) High fiber-low matrix composites: kenaf fiber/polypropylene. In: Proceedings of the 6th international conference on woodfiber–plastic composites, Madison, pp 121–124Google Scholar
  25. Shalbafan A, Luedtke J, Welling J, Thoemen H (2012a) Comparison of foam core materials in innovative lightweight wood-based panels. Eur J Wood Prod 70:287–292CrossRefGoogle Scholar
  26. Shalbafan A, Welling J, Luedtke J (2012b) Effect of processing parameters on mechanical properties of lightweight foam core sandwich panels. Wood Mater Sci Eng 7:69–75CrossRefGoogle Scholar
  27. Wolcott MP (2003) Formulation and process development of flat pressed wood–polyethylene composites. For Prod J 53:25–32Google Scholar
  28. Yang H-S, Wolcott MP, Kim H-J, Kim S, Kim H-J (2007) Effect of different compatibilizing agent on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Compos Struct 79:369–375CrossRefGoogle Scholar
  29. Zabihzadeh SM, Dastoorian F, Ebrahimi G (2010) Effect of wood species and coupling agent on mechanical properties of wood flour/HDPE composites. J Reinf Plast Compos 29:1146–1152CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ali Shalbafan
    • 1
  • Jan T. Benthien
    • 2
  • Johannes Welling
    • 2
  • Marius C. Barbu
    • 3
  1. 1.Department of Wood ScienceUniversity of HamburgHamburgGermany
  2. 2.Thuenen-Institute (TI) for Wood SciencesHamburgGermany
  3. 3.Faculty for Wood EngineeringTransilvania UniversityBrasovRomania

Personalised recommendations