European Journal of Wood and Wood Products

, Volume 71, Issue 4, pp 451–461 | Cite as

Development of a new rapid method for mould testing in a climate chamber: preliminary tests

  • Sheikh Ali AhmedEmail author
  • Margot Sehlstedt-PerssonEmail author
  • Tom Morén
Originals Originalarbeiten


The purpose of this study was to develop fast, simple and robust solid wood mould testing methods for the use in small-scale laboratory tests. The objective was to investigate mould susceptibility of different wood materials within the batches. The proposed method is based on natural contamination of non-sterile surfaces in climates conducive to mould growth. For this purpose, a climate chamber with regulated temperature and relative humidity was used. The conditioning chamber was divided into upper and lower chamber by a thin layer of stainless steel placed horizontally above the fan to minimise air circulation to the sample in the upper compartment. Mould-infected samples from outdoor tests were used as a source of mould inocula, and test trials were conducted on Scots pine (Pinus sylvestris L.) sapwood. Samples were suspended from the top of the upper chamber, and the chamber was exposed to different temperature and humidity levels. Severe mould infestation was observed after 12–14 days of incubation. Visual mould rating was then performed. Regardless of some constraints, this test method was very simple, fast, and effective. More importantly, unlike other test methods, it closely models mould infestation as it would occur under natural condition.


Moisture Content Wood Sample Climate Chamber Wood Surface Mould Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Entwicklung eines neuen Schnellverfahrens zur Prüfung von Schimmelbefall in einer Klimakammer – Vorversuche


Zweck dieser Studie war die Entwicklung eines schnellen, einfachen und robusten Verfahrens zur Prüfung von Schimmelbefall auf Massivholz im Labor. Ziel war es, die Anfälligkeit von in der Prüfkammer unterschiedlich angeordneten Prüfkörpern für Schimmelbefall zu untersuchen. Die vorgeschlagene Methode basiert auf natürlicher Kontamination nicht steriler Oberflächen in Klimata, die Schimmelwachstum fördern. Hierfür wurde eine Klimakammer mit regulierbarer Temperatur und relativer Luftfeuchte verwendet. Die Klimakammer wurde mittels einer horizontal über dem Ventilator angebrachten dünnen Edelstahlplatte in einen oberen und einen unteren Teil abgeteilt, um die Luftzirkulation im Bereich der Prüfkörper in der oberen Kammer zu minimieren. Von Schimmel befallene Prüfkörper aus Freilandversuchen dienten als Infektionsquelle. An Kiefernsplintholz (Pinus sylvestris L.) wurden Testversuche durchgeführt. Die Prüfkörper wurden an der Decke der oberen Kammer aufgehängt und in der Kammer wurden verschiedene Temperatur- und Feuchteniveaus eingestellt. Nach 12-14 Tagen wurde starker Schimmelbefall festgestellt. Anschließend wurde der Befall visuell bewertet. Abgesehen von einigen Einschränkungen erwies sich diese Methode als sehr einfach, schnell und effektiv. Noch wichtiger war jedoch, dass dieses Verfahren, im Vergleich zu anderen Prüfverfahren, Schimmelbefall am realistischsten modelliert.



The authors wish to acknowledge financial support from the European Union and the European Regional Development Fund, the County Administration of Västerbotten, the Municipality of Skellefteå, and TräCentrum Norr.


  1. ASTM D3273 (2012) Standard method for resistance to growth of mold on the surface of interior coatings in an environmental chamber. ASTM D3273-12, American Society for Testing Materials International, West Conshohocken, PA, USA. doi: 10.1520/D3273-12
  2. ASTM D2017 (2005) Standard test method of accelerated laboratory test of natural decay resistance of woods. ASTM D2017-05, American Society for Testing Materials International, West Conshohocken, PA, USA. doi: 10.1520/D2017-05
  3. AWPA E24 (2006) Standard method of evaluating the resistance of wood product surfaces to mold growth. AWPA Standard E24-06, American Wood-Preservers’ Association, Birmingham, AL, USAGoogle Scholar
  4. Blom Å, Bergström M (2005) Mycologg: a new accelerated test method for wood durability above ground. Wood Sci Technol 39:663–673CrossRefGoogle Scholar
  5. Boonstra MJ, van Acker J, Kegel E, Stevens M (2007) Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci Technol 41:31–57CrossRefGoogle Scholar
  6. Cooke RC, Whipps JM (1993) Ecophysiology of fungi. Blackwell Scientific Publications, OxfordGoogle Scholar
  7. EN 113 (2000) Wood preservatives- Method of test for determining the protective effectiveness against wood destroying Basidiomycetes. European Standard EN 113, European Committee for Standardization, CEN, BrusselsGoogle Scholar
  8. ENV 807 (2009) Wood preservatives: determination of the effectiveness against soft rotting micro-fungi and other soil inhabiting micro-organisms. European Committee for Standardization, CEN, BrusselsGoogle Scholar
  9. Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter & Co., BerlinGoogle Scholar
  10. Grant C, Hunter CA, Flannigan B, Bravery AF (1989) The moisture requirements of moulds isolated from domestic dwelling. Int Biodeterior 25:259–284CrossRefGoogle Scholar
  11. Isaksson T, Thelandersson S, Ekstrand-Tobin A, Johansson P (2010) Critical condition for onset of mould growth under varying climate conditions. Build Environ 45:1712–1721CrossRefGoogle Scholar
  12. King B, Oxley TA, Long KD (1976) Some biological effects of redistribution of soluble nutrients during drying of wood. Mater Org 3:263–276Google Scholar
  13. Råberg U, Edlund M-L, Terziev N, Land CJ (2005) Testing and evaluation of natural durability of wood in above ground conditions in Europe: an overview. J Wood Sci 51:429–440CrossRefGoogle Scholar
  14. Sargent R, Riley S, Schöttle L (2010) Measurement of dynamic sorption behaviour of small specimen of Pinus radiata: influence of wood type and moisture content of diffusion rate. Maderas Cienc Tecnol 12:93–103CrossRefGoogle Scholar
  15. Schmidt O (2006) Wood and tree fungi. Springer, BerlinGoogle Scholar
  16. Sehlstedt‐Persson M, Wamming T (2012) Processanpassning för funktionsbeständiga träprodukter: Mögelsäkring av bräder i torkningsprocessen‐ Industriförsök. Research Report, TräCentrum Norr, Skellefteå, Sweden, p 23 (in Swedish)Google Scholar
  17. Sehlstedt-Persson M, Karlsson O, Wamming T, Morén T (2011) Mold growth on sapwood boards exposed outdoors: the impact of wood drying. For Prod J 61:170–179Google Scholar
  18. SP 2899 (2010) Test method for determining mould resistance of building materials. SP Method 2899, SP Technical Research Institute of SwedenGoogle Scholar
  19. Sundqvist B (2002) Color response of Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula pubescens) subjected to heat treatment in capillary phase. Holz Roh- Werkst 60:106–114CrossRefGoogle Scholar
  20. Terziev N (1995) Migration of low-molecular sugars and nitrogenous compounds in Pinus sylvestris L. during kiln and air drying. Holzforschung 49:565–574CrossRefGoogle Scholar
  21. Terziev N, Boutelje J (1998) Effect of felling time and kiln-drying on color and susceptibility of wood to mold and fungal stain during an above-ground field test. Wood Fiber Sci 30:360–367Google Scholar
  22. Terziev N, Edlund M-L (2000) Attempt for developing a new method for above ground field testing of wood durability. IRG/WP 00-10199. International Research Group on Wood Preservation, Stockholm, p 6Google Scholar
  23. Theander O, Bjurman J, Boutelje JB (1993) Increase in the content of low-molecular carbohydrates at lumber surfaces during drying and correlations with nitrogen content, yellowing and mould growth. Wood Sci Technol 27:381–389CrossRefGoogle Scholar
  24. Time B (2002) Studies on hygroscopic moisture transport in Norway spruce. Part 1: sorption measurements of spruce exposed to cyclic changes in relative humidity. Holz Roh- Werkst 60:271–276CrossRefGoogle Scholar
  25. Van Acker J, Militz H, Stevens M (1999) The significance of accelerated laboratory testing methods determining the natural durability of wood. Holzforschung 53:449–458CrossRefGoogle Scholar
  26. Viitanen HA (1997) Modelling the time factor in the development of mould fungi: the effect of critical humidity and temperature conditions on pine and spruce sapwood. Holzforschung 51:6–14CrossRefGoogle Scholar
  27. Viitanen H, Ritschkoff A-C (1991) Mould growth in pine and spruce sapwood in relation to air humidity and temperature. Report No. 221, Swedish University of Agricultural Sciences, Department of Forest Products, Uppsala, Sweden, p 49Google Scholar
  28. Welling J, Lambertz G (2008) Environmentally friendly temporary anti-mould treatment of packaging material before drying. Maderas Cienc Tecnol 10:25–33Google Scholar
  29. Westin M (2008) Durability of ThermoWood against bacterial and fungal decay according to an expanded version of ENV 807. SP Report 2008-09-05 Ecomod. SP Technical Research Institute of Sweden, p 19Google Scholar
  30. Zabel RA, Morrell JJ (1992) Wood microbiology: decay and its prevention. Academic Press, Inc., San DiegoGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Engineering Sciences and Mathematics, Division of Wood Science and Engineering, Wood PhysicsLuleå University of TechnologySkellefteåSweden

Personalised recommendations