European Journal of Wood and Wood Products

, Volume 71, Issue 2, pp 259–266 | Cite as

Influence of geometric and mechanical parameters on stress states caused by threaded rods glued in wood

  • Emilio MartínEmail author
  • Javier Estévez
  • Dolores Otero
Originals Originalarbeiten


In the construction and rehabilitation of wooden structures, timber connections are often made using glued rods. To guarantee that these connections provide adequate resistance, it is necessary to analyse the characteristics of the connections that affect their load capacity and ductility. To address this issue, the mixed strategy of developing a broad experimental program was adopted while simultaneously performing numerical analysis of models. In this paper, the finite element method is used to study the impact of several design parameters on stress transfer between materials. This approach has facilitated design strategies that improve the effectiveness of these connections.


Timber Epoxy Adhesive Laminate Veneer Lumber Glue Line Anchorage Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Einfluss geometrischer und mechanischer Parameter auf den Spannungsverlauf bei in Holz eingeklebten Gewindestangen


Bei der Errichtung und der Sanierung von Holzkonstruktionen werden häufig eingeklebte Gewindestangen als Holzverbindungen verwendet. Um sicherzustellen, dass diese Verbindungen hinreichend zuverlässig sind, ist es notwendig, die Ursachen, die ihre Tragfähigkeit und Duktilität beeinträchtigen können, zu untersuchen. Dazu wurden ein breitangelegtes Versuchsprogramm und gleichzeitig eine numerische Modellierung durchgeführt. In dieser Studie wurde die Finite-Elemente-Methode verwendet, um den Einfluss verschiedener konstruktiver Parameter auf den Spannungsverlauf am Übergang der Materialien zu untersuchen. Dieser Ansatz hat die Entwicklung von Bemessungsstrategien, mit denen die Leistungsfähigkeit solcher Verbindungen verbessert werden kann, ermöglicht.



This research is sponsored by the Ministry of Science and Technology through research project titled ‘‘UNIONES METÁLICAS ENCOLADAS CON ADHESIVOS EN BARRAS DE MADERA” (Glued Anchored Timber Joints). The financial support is gratefully acknowledged.


  1. Aicher S, Hofflin L, Wolf M (1998) Influence of specimen geometry on stress distributions in pull-out tests of glued-in steel rods in wood. Otto Graf J 9:205–217Google Scholar
  2. Bainbridge R, Mettem C, Harvey K, Ansell M (2002) Bonded-in rod connections for timber structures. Development of design methods and test observations. Int J Adhes Adhes 22:47–59CrossRefGoogle Scholar
  3. Broughton JG, Hutchinson AR (2001) Pull-out behaviour of steel rods bonded into timber. Mater Struct 34(2):100–109CrossRefGoogle Scholar
  4. Buchanan AH, Deng XJ (1996) Strength of epoxied steel rods in glulam timber. In: Proceeding of the International Wood Engineering Conference, New Orleans, pp 488–495Google Scholar
  5. EN 338 (2009) Structural timber. Strength classes. CEN European Committee for StandardizationGoogle Scholar
  6. Estévez J, Otero D, Martín E, Vázquez JA (2012) New anchoring system with adhesive bulbs for steel rod joints in wood. Constr Build Mater 30:583–589CrossRefGoogle Scholar
  7. Guitard D (1987) Mechanics of wood and composite materials (in French). Cepadues Edition, ToulouseGoogle Scholar
  8. Gustafsson PJ, Serrano E, Aicher S, Johansson CJ (2001) A strength design equation for glued-in rods. In: Proceeding of the International RILEM Symposium, Stuttgart, GermanyGoogle Scholar
  9. Johansson CJ, Serrano E, Gustafsson PJ, Enquist B (1995) Axial strength of glued-in volts. Calculation model based on non-linear fracture mechanics. A preliminary study. In: International Council for Building Research Studies and Documentation, Working Commission W18—Timber Structures. Meeting 28, Copenhagen, DenmarkGoogle Scholar
  10. Kurian A (2000) Analytical modeling of glued laminated girder bridges using Ansys. In: 2000 Transportation Scholars Conference, Ames, pp 54–64Google Scholar
  11. Martín E, Estévez J, Otero D, Muñiz S (2006) Timber specimens parametrized design for numerical analysis. In: Proceeding of the International Conference on high performance structures and materials III, Ostende, pp 571–580Google Scholar
  12. Martín E, Estévez J, Otero D, Vázquez JA (2010a) Generation of numerical analysis models for the optimization of anchorage solutions with threaded bars glued in timber. In: Proceeding of the World Conference on Timber Engineering (WCTE 2010), Riva del Garda, ItalyGoogle Scholar
  13. Martín E, Estévez J, Otero D, Vázquez JA (2010b) Numerical analysis of metal joints glued in timber pieces. In: Proceeding of the First International Conference on Structures and Architecture (ICSA 2010), Guimaraes, PortugalGoogle Scholar
  14. Otero D, Estévez J, Martín E (2008) Glued joints in hardwood timber. Int J Adhes Adhes 28:457–463. doi: 10.1016/j.ijadhadh.2008.04.008 CrossRefGoogle Scholar
  15. Otero D, Estévez J, Martín E (2009) Influence of the geometric and material characteristics on the strength of glued joints made in chestnut timber. Mater Des 30:1325–1332. doi: 10.1016/j.matdes.2008.06.041 CrossRefGoogle Scholar
  16. Otero D, Estévez J, Martín E (2010a) Experimental analysis of bonding in steel bars glued into chestnut and tali timber (in Spanish). Materiales de Construcción 60((297)):111–125CrossRefGoogle Scholar
  17. Otero D, Estévez J, Martín E (2010b) Influence of timber density on the axial strength of joints made with glued-in steel rods: an experimental approach. Int J of Adhes Adhes 30:380–385CrossRefGoogle Scholar
  18. Otero D, Estévez J, Martín E (2010c) Model for predicting the axial strength of joints made with glued-in rods in sawn timber. Constr Build Mater 24:1773–1778CrossRefGoogle Scholar
  19. Otero D, Estévez J, Martín E, Vázquez JA (2010c) Failure modes in double-side pull-out test of threaded steel rods glued in hardwood. In: Proceeding of the World Conference on Timber Engineering (WCTE 2010), Riva del Garda, ItalyGoogle Scholar
  20. Riberholt H (1986) Glued bolts in glulam. Department of Structural Engineering, University of Denmark, Denmark (Serie R No. 210)Google Scholar
  21. Rossignon A, Espion B (2008) Experimental assessment of the pull-out strength of single rods bonded in glulam parallel to the grain. Holz Roh Werkst 66:419–432CrossRefGoogle Scholar
  22. Senno M, Piazza M, Tomasi R (2004) Axial glued-in steel timber joints. Experimental and numerical analysis. Holz Roh Werkst 62:137–146CrossRefGoogle Scholar
  23. Serrano E (2001a) Glued-in rods for timber structures. A 3D model and finite element parameter studies. Int J Adhes Adhes 21:115–127CrossRefGoogle Scholar
  24. Serrano E (2001b) Glued-in rods for timber structures. An experimental study of softening behaviour. Mater Struct 34(4):228–234CrossRefGoogle Scholar
  25. Steiger R, Gehri E, Widmann R (2006) Pull-out strength of axially loaded steel rods bonded in glulam parallel to the grain. Mater Struct 40(1):69–78CrossRefGoogle Scholar
  26. Volkersen O (1938) Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten. Luftfahrtforschung 15:41–47Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emilio Martín
    • 1
    Email author
  • Javier Estévez
    • 1
  • Dolores Otero
    • 1
  1. 1.Department of Construction TechnologyHigher Technical School of Architecture, University of A CoruñaA CoruñaSpain

Personalised recommendations