European Journal of Wood and Wood Products

, Volume 71, Issue 1, pp 17–23 | Cite as

Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment

  • Kristiina LaineEmail author
  • Lauri Rautkari
  • Mark Hughes
  • Andreja Kutnar
Originals Originalarbeiten


The mechanical properties of wood surface are of particular interest in applications where mainly the surface is exposed to use, such as flooring boards. Wood surface densification aims to improve these properties by compressing only the first few millimeters beneath the surface. Scots pine (Pinus sylvestris L.) sapwood was surface densified to three degrees of compression at 150 °C using a specially designed heated press. Half of the specimens were hydrothermally post-treated at 200 °C. To study the influence of the degree of compression and hydrothermal post-treatment on the set-recovery, specimens were subjected to water soaking-drying-cycles. The surface densification process resulted in a minor mass loss regardless of the degree of compression, whilst the hydrothermal post-treatment led to an average mass loss of 3.8 % in surface densified specimens and of 4.1 % in control un-densified specimens. Furthermore, considerable fixation of compressive deformation was obtained by hydrothermal post-treatment at 200 °C.


Lignin Densified Wood Initial Thickness Surface Densification Wood Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Reduzierung der Rückverformung von oberflächenverdichtetem Kiefernmassivholz durch hydrothermische Nachbehandlung


Die mechanischen Eigenschaften von Holzoberflächen sind insbesondere bei solchen Anwendungen interessant, bei denen die Oberflächen stark beansprucht werden, wie zum Beispiel bei Fußböden. Oberflächenverdichtung bedeutet, dass oberflächennah die Eigenschaften von Holz im Bereich von wenigen Millimetern durch Druckbeanspruchung verbessert werden. Kiefernsplintholz (Pinus sylvestris L.) wurde mit Hilfe einer speziell konstruierten Heißpresse bei 150 °C in drei Verdichtungsgrade oberflächenverdichtet. Die Hälfte der Prüfkörper wurde bei 200 °C hydrothermisch nachbehandelt. Um den Einfluss des Verdichtungsgrades und der hydrothermischen Nachbehandlung auf die Rückverformung zu untersuchen, wurden die Prüfkörper abwechselnd in Wasser gelagert und getrocknet. Die Oberflächenverdichtung ergab einen geringen Masseverlust unabhängig vom Verdichtungsgrad, wohingegen die hydrothermische Nachbehandlung einen mittleren Masseverlust von 3,8 % bei oberflächenverdichteten Prüfkörpern und von 4,1 % bei unverdichteten Prüfkörpern zur Folge hatte. Des Weiteren wurde die Rückverformung durch die hydrothermische Nachbehandlung bei 200 °C deutlich reduziert.



The authors would like to thank the COST Action FP0904 for financial support within the frame of Short Term Scientific Mission and Miss Cara Leitch for technical support.


  1. Blomberg J, Persson B, Bexell U (2006) Effects of semi-isostatic densification on anatomy and cell-shape recovery on soaking. Holzforschung 60:322–331CrossRefGoogle Scholar
  2. Dwianto W, Morooka T, Norimoto M, Kitajima T (1999) Stress relaxation of sugi (Cryptomeria japonica D. Don) wood in radial compression under high temperature steam. Holzforschung 53:541–546CrossRefGoogle Scholar
  3. Fang CH, Cloutier A, Blanchet P, Koubaa A, Mariotti N (2011) Densification of wood veneers combined with oil-heat treatment Part I: dimensional stability. Bioresourses 6:373–385Google Scholar
  4. Garćia Esteban L, Gril J, de Palacios P, Guideneo Casaús A (2004) Reduction of wood hydroscopicity and associated dimensional response by repeated humidity cycles. Ann For Sci 62:275–284CrossRefGoogle Scholar
  5. Heger F, Groux M, Girardet F, Welzbacher C, Rapp AO, Navi P (2004) Mechanical and durability performance of THM densified wood. In: Proceedings of the final workshop COST action E22 environmental optimisation of wood protection, LisbonGoogle Scholar
  6. Hillis WE (1984) High temperature and chemical effects on wood stability. Part 1: general considerations. Wood Sci Technol 18:281–293CrossRefGoogle Scholar
  7. Hsu WE, Schwald W, Schwald J, Shields JA (1988) Chemical and physical changes required for producing dimensionally stable wood-based composites. Part I: steam pretreatment. Wood Sci Technol 22:281–289CrossRefGoogle Scholar
  8. Inoue M, Norimoto M, Tanahashi M, Rowell RM (1993) Steam or heat fixation of compressed wood. Wood and Fiber Sci 25:224–235Google Scholar
  9. Inoue M, Sekino N, Morooka T, Rowell RM, Norimoto M (2008) Fixation of compressive deformation in wood by pre-steaming. J Tropical Forest Sci 20:273–281Google Scholar
  10. Kutnar A, Kamke FA (2012) Influence of temperature and steam environment on set recovery of compressive deformation of wood. Wood Sci Technol 46(5):953–964CrossRefGoogle Scholar
  11. Kutnar A, Kamke FA, Sernek M (2009) Density profile and morphology of viscoelastic thermal compressed wood. Wood Sci Technol 43:57–68CrossRefGoogle Scholar
  12. Kutnar A, Rautkari L, Laine K, Hughes M (2012) Thermodynamic characteristics of surface densified solid Scots pine wood. Eur J Wood Prod 5:727–734CrossRefGoogle Scholar
  13. Morsing N (2000) Densification of wood—the influence of hygrothermal treatment on compression of beech perpendicular to the grain. Department of structural engineering and materials, Technical university of Denmark, Series R 79Google Scholar
  14. Navi P, Girardet F (2000) Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 54:287–293CrossRefGoogle Scholar
  15. Navi P, Heger F (2004) Combined densification and Thermo-Hydro- Mechanical processing of wood. Mater Res Society Bull, p.332–336Google Scholar
  16. Norimoto M, Ota C, Akitsu H, Yamada T (1993) Permanent fixation of bending deformation in wood by heat treatment. Wood Res 79:23–33Google Scholar
  17. Rautkari L, Hughes M (2009) Eliminating set-recovery in densified wood using a steam heat-treatment process. In: Proceedings of the 4th European conference on wood modification, Stockholm, SwedenGoogle Scholar
  18. Rautkari L, Properzi M, Pichelin F, Hughes M (2010) Properties and set-recovery of surface densified Norway spruce and European beech. Wood Sci Technol 44:679–691CrossRefGoogle Scholar
  19. Rautkari L, Laine K, Laflin N, Hughes M (2011) Surface modification of Scots pine: the effect of process parameters on the through thickness density profile. J Mater Sci 46:4780–4786CrossRefGoogle Scholar
  20. Reynolds MS (2004) Hydro-thermal stabilization of wood-based materials. Master thesis, Virginia TechGoogle Scholar
  21. Statgraphics Plus version 5.0 (2000) Manugistics, Inc., RockvilleGoogle Scholar
  22. Wolcott MP, Shutler EL (2003) Temperature and moisture influence on compression—recovery behavior of wood. Wood Fiber Sci 35:540–551Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kristiina Laine
    • 1
    Email author
  • Lauri Rautkari
    • 1
  • Mark Hughes
    • 1
  • Andreja Kutnar
    • 2
    • 3
  1. 1.Department of Forest Products Technology, School of Chemical TechnologyAalto UniversityAaltoFinland
  2. 2.Andrej Marušič InstituteUniversity of PrimorskaKoperSlovenia
  3. 3.ILTRA d.o.oLjubljanaSlovenia

Personalised recommendations