Advertisement

European Journal of Wood and Wood Products

, Volume 70, Issue 6, pp 871–882 | Cite as

Assessment of phenomenological failure criteria for wood

  • J. M. CabreroEmail author
  • C. Blanco
  • K. G. Gebremedhin
  • A. Martin-Meizoso
Originals Originalarbeiten

Abstract

Many different phenomenological failure criteria have been proposed. These type of criteria do not explain the mechanism of failure itself. They merely identify failure (yes or no) and are usually regarded in practice as a simple and reliable tool for design. Most of them were developed for composite materials, but are extensively applied for wood. In this study, existing phenomenological strength criteria for orthotropic materials were applied to clear wood data. Instead of fitting the criteria to available experimental data, the criteria were used to predict failure of biaxial tests based on uniaxial strength. This procedure is closer to practice, and hence an answer to the question “is there any reliable failure criterion for wood?” Predictability of the criteria was assessed using normalisation procedure, and statistical significance of the difference of the means analysed. Based on the results, it can be concluded that a general criterion cannot be applied to predict failure, but should be chosen according to the biaxial stress state.

Keywords

Failure Criterion Orthotropic Material Stress Space Biaxial Loading Biaxial Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Beurteilung der phänomenologischen Versagenskriterien von Holz

Zusammenfassung

In der Literatur werden viele verschiedene phänomenologische Versagenskriterien beschrieben, die jedoch nicht den Versagensmechanismus selber erklären, sondern nur den Bruch identifizieren (ja oder nein). In der Praxis werden diese Kriterien in der Regel als einfaches und zuverlässiges Werkzeug für die Bemessung angesehen. Die meisten der Kriterien wurden für Verbundwerkstoffe entwickelt, werden aber zunehmend auf Holz angewandt. In dieser Studie werden bestehende phänomenologische Versagenskriterien für orthotrope Werkstoffe auf fehlerfreies Holz angewendet. Das Modell wurde nicht an die vorhandenen Versuchswerte angepasst, sondern die Kriterien wurden dazu verwendet, um den Bruch von zweiaxialen Versuchen mittels einaxialen Festigkeitswerten zu bestimmen. Dieses Verfahren ist praxisnäher und liefert somit eine Antwort auf die Frage, „Gibt es ein zuverlässiges Versagenskriterium für Holz?“ Die Vorhersagbarkeit der Modelle wurde anhand normalisierter Abweichungen von den Versuchswerten und statistischer Signifikanz analysiert. Aus den Ergebnissen kann geschlossen werden, dass es für Holz kein allgemeines Versagenskriterium gibt, sondern nach dem Spannungszustand gewählt werden sollte.

Notes

Acknowledgments

The support provided by the PIUNA Research Program of the University of Navarra for this work is greatly acknowledged.

References

  1. Aicher S, Klöck W (2001) Linear versus quadratic failure criteria for in-plane loaded wood based panels. Otto-Graff-Journal 12:187–199Google Scholar
  2. Azzi VD, Tsai SW (1965) Anisotropic strength of composites. Exp Mech 5(9):283–288CrossRefGoogle Scholar
  3. Bodig J, Jayne BA (1982) Mechanics of wood and wood composites. Van Nostrand Reinhold, New YorkGoogle Scholar
  4. Cabrero JM, Heiduschke A, Haller P (2010) Analytical assessment of the load carrying capacity of axially loaded wooden reinforced tubes. Compos Struct 92(12):2955–2965CrossRefGoogle Scholar
  5. Clouston PL, Lam F (2001) Computational modeling of strand-based wood composites. J Eng Mech 127(8):844–851CrossRefGoogle Scholar
  6. Cowin SC (1979) On the strength anisotropy of bone and wood. Transactions of the ASME. J Appl Mech 46(4):832–838CrossRefGoogle Scholar
  7. de Ruvo A, Carlsson L, Fellers C (1980) The biaxial strength of paper. Tappi 63(5):133–136Google Scholar
  8. Eberhardsteiner J (2002) Mechanisches Verhalten von Fichtenholz. Springer, ViennaCrossRefGoogle Scholar
  9. Ehlbeck J, Hemmer K (1986) Erfassung, systematische Auswertung und Ermittlung von Grundlagen über das Zusammenwirken von Längs-, Quer- und Schubspannungen bei fehlerfreiem und fehlerbehaftetem Nadelholz. Forschungsvorhaben Nr. 5764. IRB Verlag, StuttgartGoogle Scholar
  10. Feiler M (2001) Experimentelle und numerische Untersuchungen an kraftflussgerechten Gelegen zur Verstärkung von stabförmigen Verbindungsmittel: Master’s thesis. Technische Universität Dresden, GermanyGoogle Scholar
  11. Gol’denblat I, Kopnov VA (1965) Strength of glass-reinforced plastics in the complex stress state. Polym Mech 1(2):54–59CrossRefGoogle Scholar
  12. Hankinson RL (1921) Investigation on crushing strength of spruce at varying angles of grain. Material Section Report, No. 130 259, Air service information circular, Vol. 3, No. 259, McCook Field, DaytonGoogle Scholar
  13. Hemmer K (1984) Versagensarten des Holzes der Weisstanne (Abies alba) unter mehrachsiger Beanspruchung, PhD thesis. KarlsruheGoogle Scholar
  14. Hill R (1950) The mathematical theory of plasticity. Oxford University Press, LondonGoogle Scholar
  15. Hinton MJ, Kaddour AS (2007) The second world wide failure exercise: benchmarking of failure criteria under triaxial stresses for fibre-reinforced polymer composites. In: 16th international conference on composite materialsGoogle Scholar
  16. Hinton MJ, Kaddour AS, Soden PD (eds) (2004a) Failure criteria in fiber reinforced polymer composites: the world-wide failure exercise. Elsevier, AmsterdamGoogle Scholar
  17. Hinton MJ, Kaddour AS, Soden PD (eds) (2004b) The world-wide failure exercise: Its origin, concept and content. In: Failure criteria in fiber reinforced polymer composites: the world wide failure exercise. Elsevier, Amsterdam, pp 2–28Google Scholar
  18. Hoffman O (1967) The brittle strength of orthotropic materials. J Compos Mater 1:200–206CrossRefGoogle Scholar
  19. Kaddour AS, Hinton MJ, Li S, Smith PA (2007) Damage theories for fibre-reinforced polymer composites: the third world-wide failure exercise (WWFE-III). In: 16th international conference on composite materialsGoogle Scholar
  20. Kasal B (1992) A nonlinear three-dimensional finite-element model of a light-frame wood structure: PhD thesis. Oregon State University, USAGoogle Scholar
  21. Kasal B, Heiduschke A (2004) Radial reinforcement of curved laminated beams. Forest Prod J 54(1):74–79Google Scholar
  22. Kasal B, Leichti RJ (2005) State of the art in multiaxial phenomenological failure criteria for wood members. Prog Struct Mat Eng 7:3–13CrossRefGoogle Scholar
  23. Kim D-H (1995) Composite structures for civil and architectural engineering. E & FN Spon Press, LondonGoogle Scholar
  24. Malmeister AK (1966) Geometry of theories of strength. Polym Mech 2(4):324–331CrossRefGoogle Scholar
  25. Norris CB (1950) Strength of orthotropic materials subjected to combined stress. Technical Report 1816, U.S. Forest Products LaboratoryGoogle Scholar
  26. Rowlands RE (1985) Failure Mechanics of Composites, chapter Strength (failure) theories. In: Handbook of Composites, vol. 3. Elsevier Science Publishers, Amsterdam, pp 71–126Google Scholar
  27. Rowlands RE, Gunderson DE, Suhling JC, Johnson MW (1985) Biaxial strength of paperboard predicted by hill-type theories. J Strain Anal 2:121–127CrossRefGoogle Scholar
  28. Smith I, Landis E, Gong M (2003) Fracture and fatigue in wood. Wiley, New YorkGoogle Scholar
  29. Spengler R (1982) Ermittlung des Festigkeitsverhalten von Brettelementen aus Fichte unter zweiachsiger Beanspruchung durch Versuche. Technische Universität München: Berichte zur Zuverlässigkeitstheorie der Bauwerke, Heft 62, p 63Google Scholar
  30. Suhling JC, Rowlands RE, Johnson MW, Gunderson DE (1985) Tensorial strength analysis of paperboard. Exp Mech 25(1):75–84CrossRefGoogle Scholar
  31. Tennyson RC, MacDonald D, Nanyaro AP (1978) Evaluation of the tensor polynomial failure criterion for composite materials. J Compos Mater 12:63–75CrossRefGoogle Scholar
  32. Tsai SW (1988) Composite Design. Think Composites, Dayton, 4 ednGoogle Scholar
  33. Tsai SW (1992) Theory of composites design. Think Composites, DaytonGoogle Scholar
  34. Van der Put TACM (2005) The tensor polynomial failure criterion for wood. Delft Wood Science Foundation, DelftGoogle Scholar
  35. Von Mises R (1928) Mechanik der plastischen Formänderung von Kristallen. Angewandte Mathematik und Mechanik 8:161–185CrossRefGoogle Scholar
  36. Williams JM, Fridley KJ, Cofer WF, Falk RH (2000) Failure modeling of sawn lumber with a fastener hole. Finite Elem Anal Des 6:83–98CrossRefGoogle Scholar
  37. Wu EM (1972) Optimal experimental measurements of anisotropic failure tensors. J Compos Mater 6:472–489Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • J. M. Cabrero
    • 1
    Email author
  • C. Blanco
    • 2
  • K. G. Gebremedhin
    • 3
  • A. Martin-Meizoso
    • 4
  1. 1.Wood Chair. Department of Structural Analysis and Design, School of ArchitectureUniversity of NavarraPamplonaSpain
  2. 2.School of Engineering (TECNUN)University of NavarraDonostia-San SebastianSpain
  3. 3.Department of Biological and Environmental EngineeringCornell UniversityIthacaUSA
  4. 4.CEITDonostia-San SebastianSpain

Personalised recommendations