European Journal of Wood and Wood Products

, Volume 70, Issue 4, pp 497–506 | Cite as

Investigation on bonding quality of beech wood (Fagus orientalis L.) veneer during high temperature drying and aging

  • Loya Jamalirad
  • Kazem Doosthoseini
  • Gerald Koch
  • Seyed Ahmad Mirshokraie
  • Johannes Welling
Originals Originalarbeiten


In the present study, the effects of high drying temperature and UV light induced aging on bonding quality of plywood manufactured from untreated and treated veneer layers were investigated. Rotary cut veneers with dimensions of 500 mm×500 mm×2 mm produced from beech (Fagus orientalis Lipsky) log were selected for topochemical, chemical and mechanical analyses. The veneer sheets were oven-dried at 100°C and 180°C after the peeling process. Afterwards, the surfaces were exposed to artificial UV irradiation in an UV chamber for 24 h, 48 h and 72 h representing natural sun irradiation of 2, 4 and 6 months, respectively. Topochemical distribution of lignin and phenolic extractives of the treated and untreated veneers was investigated on a cellular level using UV microspectrophotometry (UMSP). For the chemical characterization of accessory compounds high performance liquid chromatography (HPLC) was used. Furthermore, the shear and bending strengths of plywood manufactured from the treated samples are determined in order to study the bonding quality. The UV microscopic detection shows that after high drying temperature and aging treatment, lignin condensation occurs. With increasing drying temperature and aging duration, more phenolic extractives are situated in parenchyma cells and vessel lumens which can be proved by increased absorbance at 278 nm. The HPLC analysis of the treated tissue showed distinct signals of polymerized compounds such as catechin and 2,6-dimethoxybenzoquinone which are chromophoric compounds in discolored beech wood. The mechanical properties of plywood showed that with increasing drying temperature up to 180°C does not negatively affect shear and bending strengths of samples. After exposure of the veneers to UV irradiation (especially 6 months), decreasing shear and bending strengths of plywood samples can be observed.


Lignin High Performance Liquid Chromatography Catechin Wood Surface Bonding Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Untersuchung des Einflusses von Hoch-Temperaturtrocknung und Alterung auf die Verklebungseigenschaften von Buchen-Furniersperrholz (Fagus orientalis)


In der vorliegenden Arbeit wurden die Verklebungseigenschaften von Sperrhölzern untersucht, die aus thermisch behandelten und UV-belichteten Schälfurnieren hergestellt wurden. Für die Untersuchungen wurden Schälfurniere der Holzart Buche (Fagus orientalis, Format 500×500×2 mm3) mit Temperaturen von 100°C und 180°C thermisch behandelt und die Oberflächen anschließend 24, 48 bzw. 72 Stunden künstlich belichtet, was einer natürlichen Sonneneinstrahlung von 2, 4 bzw. 6 Monaten entspricht. Das Holzgewebe der thermisch behandelten und UV-belichteten Furniere wurde im Vergleich zu unbehandelten Schälfurnieren topochemisch mit Hilfe der zellulären Universalmikrospektralphotometrie (UMSP) analysiert, um Reaktionen des Lignins und phenolischer Extraktstoffe zu detektieren. Für die chemischen Analysen der Extraktstoffe wurden zusätzlich chromatographische Untersuchungen (HPLC-Chromatographie) durchgeführt. Zur Charakterisierung der Verklebungseigenschaften wurden Sperrhölzer aus den unterschiedlich behandelten Furnieren hergestellt und deren Scher- und Biegefestigkeiten bestimmt. Die topochemischen Untersuchungen haben gezeigt, dass mit zunehmender Behandlungstemperatur und UV-Belichtung höherkondensierte Ligninpolymere und phenolische Extraktstoffe entstehen, die durch eine Zunahme der Absorptionswerte bei einer Wellenlänge von 278 nm charakterisiert werden. In den Extrakten der behandelten Furniere wurden v.a. polyphenolische Verbindungen wie Catechin und 2,6-Dimethoxybenzochinon isoliert, die für die Farbänderungen des Holzes verantwortlich sind. Die mechanischen Untersuchungen haben gezeigt, dass die Scher- und Biegefestigkeiten infolge der Temperaturbehandlung der Furniere nicht wesentlich beeinflusst werden, wogegen die UV-Belichtung (entsprechend 6 Monaten Sonneneinstrahlung) zu einer Abnahme der Festigkeitseigenschaften geführt hat.


  1. Ayadi N, Lejeune F, Charrier F, Charrier B, Marlin A (2003) Color stability of heat-treated wood during artificial weathering. Holz Roh- Werkst 61:221–226 Google Scholar
  2. Aydin I (2004) Activation of wood surface for glue bonds by mechanical pre-treatment and its effects on some properties of veneer surface and plywood panels. Appl Surf Sci 233:268–274 CrossRefGoogle Scholar
  3. Boonstra MJ, Van Acker J, Pizzi A (2007) Anatomical and molecular reasons for property changes of wood after full-scale industrial heat-treatment. In: Proceeding third European conference on wood modification, Cardiff, UK, 15–16 October 2007, pp 343–358 Google Scholar
  4. Brosse N, Hage RE, Chaouch M, Pétrissans M, Dumarçay S, Gérardin P (2010) Investigation of the chemical modifications of beech wood lignin during heat treatment. Polym Degrad Stab 95:1721–1726 CrossRefGoogle Scholar
  5. Burtin P, Jay-Allemand C, Charpentier JP, Janin G (2000) Modifications of hybrid walnut (Juglans nigra 23 x Juglans regia) Wood colour and phenolic composition under various steaming conditions. Holzforschung 54:33–38 CrossRefGoogle Scholar
  6. Charrier B, Haluk JP, Metche M (1995) Characterization of European oak wood constitutes acting in the brown discoloration during kiln drying. Holzforschung 49:168–172 CrossRefGoogle Scholar
  7. Dirck O, Masson D, Deglise X (1987) Actes du 2eme colloque Sciences et industries du bois. Nancy 22–24 Google Scholar
  8. EN 310 (1993) European standard. Determination of modulus of elasticity in bending and of bending strength Google Scholar
  9. EN 314 (1993) European standard. Plywood-Bonding quality. Part 2: Requirements Google Scholar
  10. Feist WC, Hon DNS (1984) Chemistry of weathering and protection. In: Rowell RM (ed) The chemistry of solid wood. American Chemical Society, Washington, pp 401–451 CrossRefGoogle Scholar
  11. Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter Press, Germany Google Scholar
  12. Fergus BJ, Goring DAI (1970) The location of guaiacyl and syringyl lignins in birch xylem tissue. Holzforschung 24:113–117 CrossRefGoogle Scholar
  13. Freeman HG (1959) Relationship between physical and chemical properties of wood and adhesion. For Prod J 9:451–458 Google Scholar
  14. Funaoka M, Kako T, Kubomura M (1991) Occurrence of diphenylmethane type condensation in lignin during heating and sulfuric acid treatment of wood. Bioresources 6:27–36 Google Scholar
  15. Futo LP (1974) Der photo chemische Abbau des Holzes als Präparations- und Analysenmethode. Holz Roh- Werkst 32:303–311 CrossRefGoogle Scholar
  16. George B, Suttie ED, Merlin A, Deglise X (2005) Photodegradation and photostabilisation of wood—the state of the art. Polym Degrad Stab 88:268–274 CrossRefGoogle Scholar
  17. Goldschmid O (1971) In: Sarkanen KV, Ludwig CH (eds) Lignins: occurrence, formation, structure and reactions. Wiley, New York, pp 241–266 Google Scholar
  18. Hathway DE (1962) In: Hillis WE (ed) Wood extractives. Academic Press, New York Google Scholar
  19. Hillis WE (1987) Heartwood and tree exudates. Springer, Berlin CrossRefGoogle Scholar
  20. Hon DNS (1991) Photochemistry of wood. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Dekker, New York, pp 525–555 Google Scholar
  21. Hon DNS (2001) Wood and cellulosic chemistry. Dekker, New York Google Scholar
  22. Ifju G (1973) Influence of steaming on the properties of red oak. Part I. Structural and chemical changes. Wood Sci 6:87–94 Google Scholar
  23. Kalnins AM (1966) Surface characteristics of wood as they affect durability of finishes Part II: Photochemical degradation of wood. USDA Forest Service Res Paper FPL 57:23–60 Google Scholar
  24. Kleist G, Schmitt U (1999) Evidence of accessory components in vessel walls of Sapelli heartwood (Entandrophragma cylindricum) obtained by transmission electron microscopy. Holz Roh- Werkst 57:93–95 CrossRefGoogle Scholar
  25. Koch G, Kleist G (2001) Application of scanning UV-microspectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung 55:563–567 CrossRefGoogle Scholar
  26. Koch G, Richter H-G, Schmitt U (2006) Topochemical investigation on phenolic deposits in the vessels of afzelia (Afzelia spp.) and merbau (Intsia spp.) heartwood. Holzforschung 60:583–588 CrossRefGoogle Scholar
  27. Koch G, Puls J, Bauch J (2003) Topochemical characterization of phenolic extractives in discolored beech wood (Fagus sylvatica L.). Holzforschung 57:339–345 CrossRefGoogle Scholar
  28. Koch G, Grünwald C (2004) Application of UV-microspectrophotometry for the topochemical detection of lignin and phenolic extractives in wood fibre cell walls. In: Schmitt U, Ander P, Barnett J, Emons AM, Saranpää P, Tschegg S (eds) Wood fibre cell walls: methods to study their formation, structure and properties. OPOCE, Brussels, pp 121–132. COST E-20 Google Scholar
  29. Kollmann F, Keylwerth R, Kübler H (1951) Verfärbung des Vollholzes und der Furniere bei der künstlichen Holztrocknung. Holz Roh- Werkst 9:382–391 CrossRefGoogle Scholar
  30. Kreber B, Haslett AN, Mc Donald AG (1999) Kiln brown stain in radiata pine: A short review on cause and methods for prevention. For Prod J 49:66–69 Google Scholar
  31. Lybeer B, Koch G (2005) A topochemical and semiquantitative study of the lignification during ageing of bamboo culms (Phyllostachys viridiglaucescens). IAWA J 26(1):99–109 Google Scholar
  32. Martínez-García A, Ortiz M, Martínez R, Ortiz P, Reguera E (2004) The condensation of furfural with urea. Ind Crops Prod 19:99–106 CrossRefGoogle Scholar
  33. Paul W, Ohlmeyer M, Leithoff H (2007) Thermal modifications of OSB-strands by a one-step heat pre-treatment—Influence of temperature on weight loss, hygroscopicity and improved fungal resistance. Holz Roh- Werkst 65:57–63 CrossRefGoogle Scholar
  34. Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43 PubMedCrossRefGoogle Scholar
  35. Takabe K, Miyauchi S, Tsunoda R, Fukazawa K (1992) Distribution of guaiacyl and syringyl lignins in Japanese beech (Fagus crenata): variation within annual ring. IAWA Bull 13(1):105–112 Google Scholar
  36. Theander O, Bjurman J, Boutelje JB (1993) Increase in the content of low-molecular carbohydrates at lumber surfaces during drying and correlations with nitrogen content, yellowing and mould growth. Wood Sci Technol 27:381–389 CrossRefGoogle Scholar
  37. Tolvaj L, Faix O (1995) Artificial ageing of wood monitored by DRIFT Spectroscopy and CIEL Lab Color measurements. Holzforschung 49:397–404 CrossRefGoogle Scholar
  38. Tumen I, Aydemir D, Gunduz G, Uner B, Cetin H (2010) Changes in the chemical structure of thermally treated wood. Bioresources 5(3):1936–1944 Google Scholar
  39. Wegener G, Fengel D (1988) Zum Stand der chemischen und mikroskopischen Untersuchungen an trocknungsverfärbtem Eichenschnittholz. Holz-Zentbl 114:2238–2241 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Loya Jamalirad
    • 1
  • Kazem Doosthoseini
    • 1
  • Gerald Koch
    • 2
  • Seyed Ahmad Mirshokraie
    • 3
  • Johannes Welling
    • 2
  1. 1.Department of Wood and Paper Science and Technology, Faculty of Natural ResourcesUniversity of TehranTehranIran
  2. 2.Institute for Wood Technology and Wood Biology, Federal Research Institute of Rural AreasForestry and Fisheries (vTI)HamburgGermany
  3. 3.Department of ChemistryPayame Noor UniversityTehranIran

Personalised recommendations