Advertisement

European Journal of Wood and Wood Products

, Volume 70, Issue 4, pp 441–444 | Cite as

Increased dimensional stability of Chinese fir through steam-heat treatment

  • Yongjian Cao
  • Jianxiong LuEmail author
  • Rongfeng Huang
  • Jiali Jiang
Originals Originalarbeiten

Abstract

Chinese Fir is one of the most commonly planted tree species in China. As a fast-growing species, the main drawback is dimensional instability, which limits its applications. Steam-heat treatment is one of the effective methods to improve the dimensional stability of wood. Heartwood and sapwood of Chinese fir were treated using thermal modification with steam that was used as a heating medium and a shielding gas at temperatures ranging from 170 to 230°C and length of time from 1 to 5 hours in an airtight chamber with an atmosphere comprising less than 2 per cent of oxygen. The effect of steam-heat treatment on anti-shrink efficiency and anti-swelling efficiency were examined. The results indicated that the dimensional stability of the wood was increased by 73% for heartwood and 71% for sapwood at 230°C for 5 hours, respectively.

Keywords

Dimensional Stability Equilibrium Moisture Content Wood Cell Wall Cunninghamia Lanceolata Airtight Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Verbesserung der Dimensionsstabilität von Chinesischem Tannenholz durch Heißdampfbehandlung

Zusammenfassung

Chinesische Tanne ist eine der in China am meisten gepflanzten Baumarten. Der größte Nachteil dieser schnell wachsenden Baumart ist die geringe Dimensionsstabilität und die dadurch eingeschränkten Verwendungsmöglichkeiten des Holzes. Die Heißdampfbehandlung ist ein wirksames Verfahren zur Verbesserung der Dimensionsstabilität von Holz. Chinesisches Tannenkern- und Splintholz wurde mit Dampf als Heizmittel und einem Inertgas bei Temperaturen von 170 bis 230°C für eine Dauer von 1 bis 5 Stunden in einer luftdichten Kammer bei einer Atmosphäre mit weniger als 2 % Sauerstoff thermisch behandelt. Der Einfluss einer Heißdampfbehandlung auf die Schwindungs- und Quellungsvergütung wurde untersucht. Nach einer fünfstündigen Behandlung bei 230°C verbesserte sich die Dimensionsstabilität von Kernholz um 73 % und die von Splintholz um 71 %.

Notes

Acknowledgements

This research was funded by the National Natural Science Foundation of China (No. 30825034).

References

  1. Bekhta P, Niemz P (2003) Effect of high temperature on the change in color, dimensional stabilization and mechanical properties of spruce wood. Holzforschung 57(5):539–546 CrossRefGoogle Scholar
  2. Esteves BM, Domingos IJ, Pereira HM (2008) Pine wood modification by heat treatment in air. BioResources 3(1):142–154 Google Scholar
  3. Hill CAS (2006) Wood modification: chemical, thermal and other processes. Wiley, New York CrossRefGoogle Scholar
  4. Jämsä S, Viitaniemi P (2001) Heat treatment of wood—better durability without chemicals. In: Rapp AO (ed) Review on heat treatments of wood. Proceedings of the special seminar, forestry and forestry products, France. COST Action E22, EUR 19885, Antibes, France, 9 February 2001, pp 17–22 Google Scholar
  5. Jermannaud A, Duchez L, Guyonnet R (2002) Wood retification in France: an industrial process of heat treatment producing lumber with improved resistance to decay. In: Enhancing the durability of lumber and engineered wood products, forest products society, US, pp 121–122 Google Scholar
  6. Mburu F, Dumarçay S, Bocquet JF, Petrissans M, Gérardin P (2008) Effect of chemical modifications caused by heat treatment on mechanical properties of Grevillea robusta wood. Polym Degrad Stab 93:401–405 CrossRefGoogle Scholar
  7. Militz H, Tjeerdsma B (2001) Heat treatment of wood by the Plato-process. In: Rapp AO (ed) Review on heat treatments of wood. Proceedings of the special seminar, forestry and forestry products, France. COST Action E22, EUR 19885, Antibes, France, 9 February 2001, pp 23–34 Google Scholar
  8. Rapp AO, Sailer M (2001) Heat treatment of wood in Germany—state of the art. In: Rapp AO (ed) Review on heat treatments of wood. Proceedings of the special seminar, forestry and forestry products, France. COST Action E22, EUR 19885, Antibes, France, 9 February 2001, pp 43–60 Google Scholar
  9. Santos JA (2000) Mechanical behaviour of Eucalyptus wood modified by heat. Wood Sci Technol 34:39–43 CrossRefGoogle Scholar
  10. Stamm AJ (1956) Thermal degradation of wood and cellulose. J Ind Eng Chem 48:413–417 CrossRefGoogle Scholar
  11. Stamm AJ (1964) Wood and cellulose science. Ronald Press, New York, pp 549 Google Scholar
  12. Stamm AJ, Hansen LA (1937) Minimizing wood shrinkage and swelling: effect of heating in various gases. Ind Chem 7:831–833 CrossRefGoogle Scholar
  13. Syrjänen T, Oy K (2001) Production and classification of heat treated wood in Finland. In: Rapp AO (ed) Review on heat treatments of wood. Proceedings of the special seminar, forestry and forestry products, France. COST Action E22, EUR 19885, Antibes, France, 9 February 2001, pp 7–16 Google Scholar
  14. Vernois M (2001) Heat treatment of wood in France—state of the art. In: Rapp AO (ed) Review on heat treatments of wood. Proceedings of the special seminar, forestry and forestry products, France, COST Action E22, EUR 19885, Antibes, France, 9 February 2001, pp 35–42 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yongjian Cao
    • 1
    • 2
  • Jianxiong Lu
    • 1
    Email author
  • Rongfeng Huang
    • 1
  • Jiali Jiang
    • 1
  1. 1.Key Laboratory and Wood Science and Technology of State Forestry Administration, Research Institute of Wood IndustryChinese Academy of ForestryBeijingP.R. China
  2. 2.Wood Science and Technology Centre, Faculty of Forestry and Environmental ManagementUniversity of New BrunswickFrederictonCanada

Personalised recommendations