European Journal of Wood and Wood Products

, Volume 70, Issue 1–3, pp 287–292 | Cite as

Comparison of foam core materials in innovative lightweight wood-based panels

  • A. Shalbafan
  • J. Luedtke
  • J. Welling
  • H. Thoemen
Originals Originalarbeiten


In the present paper, lightweight wood-based foam core panels were produced in a novel continuous process. Expandable microspheres (MS) and expandable polystyrene (EPS) were used as core materials. The influence of surface thickness and core materials on bending strength, internal bond and specific strength of the produced panel were investigated.

With increasing the surface thickness, bending strength was increased in both core types of panels. The internal bond value of the panels with expandable microspheres was steadily raised while the surface thickness was increased. The internal bond for the expandable polystyrene with increasing face thickness was reduced. In comparison with conventional particleboards, the specific bending strength and internal bond were increased. In addition, FE-SEM-microscopy and gamma-ray densitometry were used to characterize the panels.


Foam Core Material Internal Bond Sandwich Panel Core Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Vergleich von Schaumkernmaterialien in innovativen leichtgewichtigen Holzwerkstoffplatten


Leichte Schaumkernplatten wurden in einem neuartigen einstufigen Verfahren hergestellt. In zwei Plattenvarianten wurden als Mittellagenmaterialien expandierbare Mikrosphären (MS) und expandierbares Polystyrol (EPS) eingesetzt. Der Einfluss der Decklagendicke und des Kernmaterials auf Biegefestigkeit, Querzugfestigkeit und die korrespondierenden spezifischen Festigkeiten wurde untersucht.

Es konnte ein deutlicher Einfluss der Decklagendicke auf die Biegefestigkeiten beider Plattenvarianten und eine steigende Querzugfestigkeit der Platten mit MS-Mittellagen nachgewiesen werden. Die Querzugeigenschaften der Platten mit MS-Mittellagen reduzierten sich mit steigender Decklagendicke. Im Vergleich zu konventionellen Spanplatten konnte eine Erhöhung der spezifischen Biege- und Querzugfestigkeiten festgestellt werden. Die Analyse der Ergebnisse erfolgte mit Hilfe von FE-SEM-Mikroskopie und Gammastrahlen-Densitometrie.



Sincere thanks are expressed to the “Ministry of Science, Research and Technology of Iran” for granting Ali Shalbafan a doctoral scholarship. The authors would also like to thank the companies Sunpor, AkzoNobel and BASF for providing materials.


  1. Allen HG (1969) Analysis and design of structural sandwich panels. Pergamon, Oxford Google Scholar
  2. Karlsson K, Aström T (1997) Manufacturing and applications of structural sandwich components. Sci Ltd Part A (28A):97–111 Google Scholar
  3. Doroudiani S, Kortschot M (2004) Expanded wood fiber polystyrene composites: processing-structure-mechanical properties relationships. Thermoplast Compos Mater 17(1):13–30 CrossRefGoogle Scholar
  4. Gibson LJ, Ashby MF (1982) The mechanics of three-dimensional cellular materials. Proc R Lond A 382:43–59 CrossRefGoogle Scholar
  5. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, Cambridge Google Scholar
  6. Luedtke J, Welling J, Thoemen H, Barbu MC (2008a) Development of a continuous process for the production of lightweight panel boards. In: Ferreira AJM (ed) 8th international conference on sandwich structure ICSS8, Porto, Portugal Google Scholar
  7. Luedtke J, Lohmann M, Thoemen H, Welling J (2008b) Foam core panels produced in a one-stage process: composition and specific properties. In: Hague J (ed) 9th Pacific Rim bio-based composites symposium, Rotorua, 6–8 November 2009 Google Scholar
  8. May-Pat A, Aviles F, Aguilar JO (2010) Mechanical properties of sandwich panels with perforated foam cores. J Sandw Struct Mater, 1–18 Google Scholar
  9. Michanickl A (2006) Development of a new light wood-based panel. In: 5th European wood-based panel symposium, Hannover, Germany Google Scholar
  10. Vinson J (1999) The behavior of sandwich structures of isotropic and composite materials. Taylor and Francis Routledge, Pennsylvania Google Scholar
  11. Wang Z, Gao L, Zhang G, Chang L (2008) Microscopic structure and properties of wood-based foaming composites. Eur J Wood Prod 3(3):357–379 Google Scholar
  12. Zenkert D (1997) The handbook of sandwich construction. Cradley Heath, Engineering Materials Advisory, UK Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. Shalbafan
    • 1
  • J. Luedtke
    • 2
  • J. Welling
    • 2
  • H. Thoemen
    • 3
  1. 1.Department of Wood ScienceUniversity of HamburgHamburgGermany
  2. 2.Institute of Wood Technology and Wood BiologyJohann Heinrich von Thuenen-Institute (vTI)HamburgGermany
  3. 3.Dept. ArchitectureWood and Civil Engineering Bern University of Applied ScienceBielSwitzerland

Personalised recommendations